化工学报 ›› 2017, Vol. 68 ›› Issue (11): 3995-4004.DOI: 10.11949/j.issn.0438-1157.20170793
杨政伟1, 顾莹莹1, 赵朝成1, 张秀霞1, 李士恩2
收稿日期:
2017-06-21
修回日期:
2017-07-31
出版日期:
2017-11-05
发布日期:
2017-11-05
通讯作者:
顾莹莹
基金资助:
国家自然科学基金项目(41201303);中央高校基本科研业务费专项资金(14CX02191A,17CX02075);山东省自然科学基金项目(ZR2017QEE016);中国石油大学(华东)研究生创新工程资助项目(YCX2017049)。
YANG Zhengwei1, GU Yingying1, ZHAO Chaocheng1, ZHANG Xiuxia1, LI Shi'en2
Received:
2017-06-21
Revised:
2017-07-31
Online:
2017-11-05
Published:
2017-11-05
Supported by:
supported by the National Natural Science Foundation of China (41201303), the Fundamental Research for the Central Universities (14CX02191A, 17CX02075), the Natural Science Foundation of Shandong Province, China(ZR2017QEE016) and China University of Petroleum (East China) Graduate Student Innovation Project (YCX2017049).
摘要:
微生物燃料电池(microbial fuel cells,MFCs)是一种利用产电微生物将化学能直接转化为电能的技术,其在运行期间不消耗外界能量且无二次污染,日益得到人们的广泛关注。土壤因富含有机质和庞大的微生物种群,是产电微生物的“天然培养基”。近几年来,以土壤为基质的MFCs在产电、土壤污染评价和修复等方面展现了较大的研究潜能和应用前景。本文全面介绍了目前MFCs在土壤产电、有机污染物降解、重金属污染治理、温室气体减排以及生物传感器等方面的应用研究;总结了目前土壤MFCs研究中应用的反应器构型、电极和产电微生物种群;在此基础上提出了以土壤为基质的MFCs在研究及应用过程中存在的主要问题,并对其研究前景进行展望。
中图分类号:
杨政伟, 顾莹莹, 赵朝成, 张秀霞, 李士恩. 土壤微生物燃料电池的研究进展及展望[J]. 化工学报, 2017, 68(11): 3995-4004.
YANG Zhengwei, GU Yingying, ZHAO Chaocheng, ZHANG Xiuxia, LI Shi'en. Research progress and prospect of soil microbial fuel cells[J]. CIESC Journal, 2017, 68(11): 3995-4004.
[1] | LOVLEY D R. Bug juice:harvesting electricity with microorganisms[J]. Nature Reviews Microbiology, 2006, 4(7):497-508. |
[2] | YUAN Y, ZHOU S G, ZHUANG L. A new approach to in situ sediment remediation based on air-cathode microbial fuel cells[J]. Journal of Soils and Sediments, 2010, 10(7):1427-1433. |
[3] | LOVLEY D R, NEVIN P K. A shift in the current:new applications and concepts for microbe-electrode electron exchange[J]. Current Opinion in Biotechnology, 2011, 22(3):1-8. |
[4] | WANG H M, REN Z Y J. A comprehensive review of microbial electrochemical systems as a platform technology[J]. Biotechnology Advances, 2013, 31(8):1796-1807. |
[5] | GUO S H, FAN R J, LI T T, et al. Synergistic effects of bioremediation and electrokinetics in the remediation of petroleum-contaminated soil[J]. Chemosphere, 2014, 109:226-233. |
[6] | GILL R T, HARBOTTLE M J, SMITH J W N, et al. Electrokinetic-enhanced bioremediation of organic contaminated:a review of processes and environmental applications[J]. Chemosphere, 2014, 107:31-42. |
[7] | KIM H J, HYUN M S, CHANG I S, et al. A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens[J]. J. Microbial. Biotechnol., 1999, 9(3):365-367. |
[8] | LIU H, RAMNARAYANAN R, LOGAN B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Environ. Sci. Technol., 2004, 38(7):2281-2285. |
[9] | LOGAN B, CHENG S, WATSON V, et al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells[J]. Environmental Science & Technology, 2007, 41(9):3341-3346. |
[10] | FREGUIA S, RABAEY K, YUAN Z, et al. Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells[J]. Water Research, 2008, 42(6/7):1387-1396. |
[11] | YU E, CHENG S, LOGAN B, et al. Electrochemical reduction of oxygen with iron phthalocyanine in neutral media[J]. Journal of Applied Electrochemistry, 2009, 39(5):705-711. |
[12] | YUAN Y, ZHOU S, ZHUANG L. Polypyrrole/carbon black composite as a novel oxygen reduction catalyst for microbial fuel cells[J]. Journal of Power Sources, 2010, 195(11):3490-3493. |
[13] | WEI J, LIANG P, HUANG X. Recent progress in electrodes for microbial fuel cells[J]. Bioresource Technology, 2011, 102(20):9335-9344. |
[14] | ZHANG F, SAITO T, CHENG S, et al. Microbial fuel cell cathodes with poly (dimethylsiloxane)diffusion layers constructed around stainless steel mesh current collectors[J]. Environmental Science & Technology, 2010, 44(4):1490-1495. |
[15] | RINGELBERG D B, FOLEY K L, REYNOLDS C M.Electrogenic capacity and community composition of anodic biofilms in soil based bioelectrochemical systems[J]. Applied Microbiology and Biotechnology, 2011, 90(5):1805-1815. |
[16] | LOGAN B E, REGAN J M. Microbial fuel cells-challenges and applications[J]. Environ. Sci. Technol., 2006, 40(17):5172-5180. |
[17] | WOLINSKA A, STEPNIEWSKA Z, BIELECKA A, et al. Bioelectricity production from soil using microbial fuel cells[J]. Applied Biochemistry and Biotechnology, 2014, 173(8):2287-2296. |
[18] | DUNAJ S J, VALLINO J J, HINES M E, et al. Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells[J]. Environmental Science & Technology, 2012, 46(3):1914-1922. |
[19] | AFSHAM N, ROSHANDEL R, YAGHMAEI S, et al. Bioelectricity generation in a soil microbial fuel cell with biocathode denitrification[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2015, 37(19):2092-2098. |
[20] | KAKU N, YONEZAWA N, KODAMA Y, et al. Plant/microbe cooperation for electricity generation in a rice paddy field[J]. Applied Microbiology and Biotechnology, 2008, 79(1):43-49. |
[21] | CHEN Z, HUANG Y, LIANG J, et al. A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere[J]. Bioresource Technology, 2011, 108:55-59. |
[22] | DOMINGUEZ-GARAY A, BERNA A, ORTIZ-BERNAD I, et al. Silica colloid formation enhances performance of sediment microbial fuel cells in a low conductivity soil[J]. Environmental Science & Technology, 2013, 47(4):2117-2122. |
[23] | HELDER M, STRIK D P, HAMELERS H V, et al. New plant-growth medium for increased power output of the plant-microbial fuel cell[J]. Bioresource Technology, 2012, 104:417-423. |
[24] | RODRIGO J, BOLTES K, ESTEVE-NUÑEZ A. Microbial-electrochemical bioremediation and detoxification of dibenzothiophene-polluted soil[J]. Chemosphere, 2014, 101:61-65. |
[25] | HUANG D Y, ZHOU S G, CHEN Q, et al. Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell[J]. Chemical Engineering Journal, 2011, 172(2/3):647-653. |
[26] | CAO X, SONG H L, YU C Y, et al. Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell[J]. Bioresource Technology, 2015, 189:87-93. |
[27] | 弋舒昱. MFC对土壤污染物的净化效能研究[D]. 南京:东南大学, 2015. YI S Y. Research on purification performance of soil pollution by microbial fuel cell[D]. Nanjing:Southeast University, 2015. |
[28] | WANG X, CAI Z, ZHOU Q X, et al. Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cell[J]. Biotechnology & Bioengineering, 2011, 109(2):426-432. |
[29] | LI X J, WANG X, WAN L L, et al. Enhanced biodegradation of aged petroleum hydrocarbons in soils by glucose addition in microbial fuel cells[J]. Journal of Chemical Technology and Biotechnology, 2016, 91(1):267-275. |
[30] | LI X J, WANG X, ZHANG Y Y, et al. Salinity and conductivity amendment of soil enhanced the bioelectrochemical degradation of petroleum hydrocarbons[J]. Scientific Reports, 2016, 6:32861. |
[31] | LI X J, WANG X, ZHANG Y Y, et al. Extended petroleum hydrocarbon bioremediation in saline soil using Pt-free multianodes microbial fuel cells[J]. RSC Advances, 2014, 4(104):59803-59808. |
[32] | LU L, YAZDI H, JIN S, et al. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems[J]. Journal of Hazardous Materials, 2014, 274:8-15. |
[33] | LU L, HUGGINS T, JIN S, et al. Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil[J]. Environmental Science & Technology, 2014, 48:4021-4029. |
[34] | ZHANG Y Y, WANG X, LI X J, et al. Horizontal arrangement of anodes of microbial fuel cells enhances remediation of petroleum hydrocarbon-contaminated soil[J]. Environmental Science and Pollution Research, 2015, 22:2335-2341. |
[35] | LI X, WANG X, ZHAO Q, et al. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells[J]. Biosensors & Bioelectronics, 2016, 85:135-141. |
[36] | KERMANSHAHI P A, KARAMANEV D, MARGARITIS A. Biodegradation of petroleum hydrocarbons in an immobilized cell airlift bioreactor[J]. Water Research, 2005, 39(15):3704-3714. |
[37] | 李晓晶, 赵倩, 张月勇, 等. 微生物燃料电池修复石油污染盐碱土壤[J]. 环境工程学报, 2017, 11(2):1185-1191. LI X J, ZHAO Q, ZHANG Y Y, et al. Microbial fuel cell remediation for saline-alkaline soil contaminated by petroleum hydrocarbons[J]. Chinese Journal of Environmental Engineering, 2017, 11(2):1185-1191. |
[38] | 田静. 土壤微生物燃料电池修复复合污染土壤的实验研究[D]. 北京:北京化工大学, 2016. TIAN J. The study of remediation of co-contaminated soil with soil microbial fuel cells[D]. Beijing:Beijing University of Chemical Technology, 2016. |
[39] | HUANG L, CHEN J, QUAN X, et al. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell[J]. Bioprocess and Biosystems Engineering, 2010, 33(8):937-945. |
[40] | WANG H, SONG H, YU R, et al. New process for copper migration by bioelectricity generation in soil microbial fuel cells[J]. Environmental Science and Pollution Research International, 2016, 23(13):13147-13154. |
[41] | HABIBUL N, HU Y, SHENG G P. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils[J]. Journal of Hazardous Materials, 2016, 318:9-14. |
[42] | 邓欢, 薛洪婧. 土壤微生物产电技术及其潜在应用研究进展[J]. 环境科学, 2015, 36(10):3926-3934. DENG H, XUE H J. Research progress in technology of using soil micro-organisms to generate electricity and its potential applications[J]. Environmental Science, 2015, 36(10):3926-3934. |
[43] | ARENDS J B, SPEECKAERT J, BLONDEEL E, et al. Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell[J]. Applied Microbiology and Biotechnology, 2014, 98(7):3205-3217. |
[44] | BRUNELLI D, TOSATO P, ROSSI M. Flora health wireless monitoring with plant-microbial fuel cell[J]. Procedia Engineering, 2016, 168:1646-1650. |
[45] | 姜允斌, 钟文辉, 薛洪婧, 等. 土壤微生物产电信号评价芘污染毒性的研究[J]. 土壤学报, 2014, 51(6):1332-1341. JIANG Y B, ZHONG W H, XUE H J, et al. Assessment of pyrene contamination toxicity by soil microbial electricity production signals[J]. Acta Pedologica Sinica, 2014, 51(6):1332-1341. |
[46] | DENG H, JIANG Y B, ZHOU Y W, et al. Using electrical signals of microbial fuel cells to detect copper stress on soil microorganisms[J]. European Journal of Soil Science, 2015, 66(2):369-377. |
[47] | XU X, ZHAO Q L, WU M S, et al. Biodegradation of organic matter and anodic microbial communities analysis in sediment microbial fuel cells with/without Fe(Ⅲ) oxide addition[J]. Bioresource Technology, 2017, 225:402-408. |
[48] | REIMERS C E, TENDER L M, FERTIG S, et al. Harvesting energy from the marine sediment-water interface[J]. Environ. Sci. Technol., 2001, 35:192-195. |
[49] | TENDER L M, REIMERS C E, STECHER H A. Harnessing microbially generated power on the seafloor[J]. Nat. Biotechnol., 2002, 20(8):821-825. |
[50] | BOND D R, HOLMES D R, TENDER L M, et al. Electrode-reducing microorganisms that harvest energy from marine sediments[J]. Science, 2002, 295(5554):483-485. |
[51] | LOVLEY D R. Microbial fuel cells:novel microbial physiologies and engineering approaches[J]. Current Opinion in Biotechnology, 2006, 17(9):327-321. |
[52] | SHANTARAM A, BEYENAL H, VELUCHAMY R, et al. Wireless sensors powered by microbial fuel cells[J]. Environ. Sci. Technol., 2005, 39(13):5037-5042. |
[53] | SCOTT K, COTLARCIUC I, HALL D, et al. Power from marine sediment fuel cells:the influence of anode material[J]. Journal of Applied Electrochemistry, 2008, 38(9):1313-1319. |
[54] | ZHAO Y, NAKANISHI S, WATANABE K, et al. Hydroxylated and aminated polyaniline nanowire networks for improving anode performance in microbial fuel cells[J]. Journal of Bioscience and Bioengineering, 2011, 112(1):63-66. |
[55] | LI C, ZHANG L, DING L, et al. Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis[J]. Biosensors and Bioelectronics, 2011, 26(10):4169-4176. |
[56] | LIU J, QIAO Y, GUO C X, et al. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells[J]. Bioresource Technology, 2012, 114:275-280. |
[57] | LIANG P, WANG H, XIA X, et al. Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells[J]. Biosensors and Bioelectronics, 2011, 26(6):3000-3004. |
[58] | 周宇, 刘中良, 侯俊先, 等. 化学氧化改性微生物燃料电池阳极[J]. 化工学报, 2015, 66(3):1171-1177. ZHOU Y, LIU Z L, HOU J X, et al. Microbial fuel cell anode modified by chemical oxidation[J]. CIESC Journal, 2015, 66(3):1171-1177. |
[59] | HEIJNE A, HAMELERS H V M, SAAKES M, et al. Performance of nonporous graphite and titanium-based anodes in microbial fuel cells[J]. Electrochimica Acta, 2008, 53(18):5697-5703. |
[60] | SUN M, ZHANG F, TONG Z H, et al. A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1[J]. Biosensors and Bioelectronics, 2010, 26(2):338-343. |
[61] | WANG P, LAI B, LI H R, et al. Deposition of Fe on graphite felt by thermal decomposition of Fe(CO)5 for effective cathodic preparation of microbial fuel cells[J].Bioresource Technology, 2013, 134:30-35. |
[62] | CHENG S, LIU H, LOGAN B E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells[J]. Environmental Science & Technology, 2006, 40(1):364-369. |
[63] | GRIFFITHS B S, RITZ K, BARDGETT R D, et al. Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions:an examination of the biodiversity-ecosystem function relationship[J]. Oikos, 2000, 90(2):279-294. |
[64] | LYON Y D, BURET F, VOGEL M T, et al. Is resistance futile changing external resistance does not improve microbial fuel cell performance[J]. Bioelectrochemistry, 2010, 78(1):2-7. |
[65] | 姜允斌, 邓欢, 黄新琦, 等. 一株土壤产电菌Clostridium sporogenes的分离及其产电性能[J]. 微生物学报, 2016, 56(5):846-855. JIANG Y B, DENG H, HUANG X Q, et al. Isolation and production performance of a soil bacterium Clostridium sporogenes[J]. Acta Microbiologica Sinica, 2016, 56(5):846-855. |
[66] | LIU M, YUAN Y, ZHANG L X, et al. Bioelectricity generation by a Gram-positive Corynebacterium sp. strain MFC03 under alkaline condition in microbial fuel cells[J]. Bioresource Technology, 2010, 101(6):1807-1811. |
[67] | FRANKS A E, NEVIN K P. Microbial fuel cells,a current review[J]. Energies, 2010, 3(5):899-919. |
[68] | KOEN W, KIM D, CEES B, et al. Electricity from wetlands:tubular plant microbial fuels with silicone gas-diffusion biocathodes[J]. Applied Energy, 2017, 1(185):642-649. |
[69] | VIJAY A, VAISHNAVA M, CHHABRA M. Microbial fuel cell assisted nitrate nitrogen removal using cow manure and soil[J]. Environmental Science and Pollution Research International, 2016, 23(8):7744-7756. |
[70] | DENG H. A review of diversity-stability relationship of soil microbial community:What do we know[J]. Journal of Environmental Sciences, 2012, 24(6):1027-1035. |
[71] | 李晶, 刘玉荣, 贺纪正, 等. 土壤微生物对环境胁迫的响应机制[J]. 环境科学学报, 2013, 33(4):959-967. LI J, LIU Y R, HE J Z, et al. Insights into the responses of soil microbial community to the environmental disturbances[J]. Acta Scientiae Circumstantiae, 2013, 33(4):959-967. |
[72] | 宋长青, 吴金水, 陆雅海, 等. 中国土壤微生物学研究10年回顾[J]. 地球科学进展, 2013, 28(10):1087-1105. SONG C Q, WU J S, LU Y H, et al. Review of soil microbiology research in China in past 10 years[J]. Advances in Earth Science, 2013, 28(10):1087-1105. |
[1] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[4] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[5] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[6] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[7] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[8] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[9] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[10] | 朱理想, 罗默也, 张晓东, 龙涛, 余冉. 醌指纹法指示三氯乙烯污染土功能微生物活性应用研究[J]. 化工学报, 2023, 74(6): 2647-2654. |
[11] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[12] | 胡南, 陶德敏, 杨照岚, 王学兵, 张向旭, 刘玉龙, 丁德馨. 铁炭微电解与硫酸盐还原菌耦合修复铀尾矿库渗滤水的研究[J]. 化工学报, 2023, 74(6): 2655-2667. |
[13] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[14] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
[15] | 郭旭, 张永政, 夏厚兵, 杨娜, 朱真珍, 齐晶瑶. 碳基材料电氧化去除水体污染物的研究进展[J]. 化工学报, 2023, 74(5): 1862-1874. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||