化工学报 ›› 2018, Vol. 69 ›› Issue (5): 1809-1818.DOI: 10.11949/j.issn.0438-1157.20171487
许咪咪, 王淑娟
收稿日期:
2017-11-07
修回日期:
2018-01-09
出版日期:
2018-05-05
发布日期:
2018-05-05
通讯作者:
王淑娟
基金资助:
国家重点研发计划项目(2017YFB0603301-2)。
XU Mimi, WANG Shujuan
Received:
2017-11-07
Revised:
2018-01-09
Online:
2018-05-05
Published:
2018-05-05
Supported by:
supported by the National Key R&D Program (2017YFB0603301-2).
摘要:
化学溶剂吸收法是最有应用潜力的燃烧后二氧化碳脱除技术之一,较高的溶剂再生能耗阻碍了其进一步的工业应用。液-液相变溶剂由于具有降低吸收再生能耗的潜力,成为新型吸收剂的研究热点。综述了液-液相变溶剂的研究现状,从溶剂组成及其相变机理角度出发,将液-液相变溶剂分为热致相变溶剂、有机胺-低吸收速率胺溶剂、化学-物理溶剂、有机胺-离子液体溶剂四类吸收剂,分别介绍各类溶剂的研究进展,重点阐述其吸收性能及相变机理,并分析比较了各溶剂的优缺点。分析表明液-液相变溶剂节能潜力较大,今后的研究工作应侧重于相变溶剂的设计原则及分层机理的深入探讨。
中图分类号:
许咪咪, 王淑娟. 液-液相变溶剂捕集CO2技术研究进展[J]. 化工学报, 2018, 69(5): 1809-1818.
XU Mimi, WANG Shujuan. Research progress in CO2 capture technology using liquid-liquid biphasic solvents[J]. CIESC Journal, 2018, 69(5): 1809-1818.
[1] | KEITH D W. Why capture CO2 from the atmosphere?[J]. Science, 2009, 325(5948):1654. |
[2] | International Energy Agency. CO2 emissions from fuel combustion 2011:complete edition-ISBN 9789264103061[J]. SourceOECD Energy, 2011, 2011(24):i-538. |
[3] | NAUELS A. Climate change 2013:the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. IPCC, 2013:159-254. |
[4] | ZHANG X, ZHANG X, DONG H, et al. Carbon capture with ionic liquids:overview and progress[J]. Energy & Environmental Science, 2012, 5(5):6668-6681. |
[5] | BARRY H. Carbon dioxide capture from power stations[R]. IEA Report, 2001. |
[6] | RAO A B, RUBIN E S. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control[J]. Environmental Science & Technology, 2002, 36(20):4467-4475. |
[7] | DAVISON J. Performance and costs of power plants with capture and storage of CO2[J]. Energy, 2007, 32(7):1163-1176. |
[8] | RABENSTEINER M, KINGER G, KOLLER M, et al. Pilot plant study of aqueous solution of piperazine activated 2-amino-2-methyl-1-propanol for post combustion carbon dioxide capture[J]. International Journal of Greenhouse Gas Control, 2016, 51:106-117. |
[9] | LIANG Z, RONGWONG W, LIU H, et al. Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents[J]. International Journal of Greenhouse Gas Control, 2015, 40:26-54. |
[10] | KENARSARI S D, YANG D, JIANG G, et al. Review of recent advances in carbon dioxide separation and capture[J]. RSC Advances, 2013, 3(45):22739-22773. |
[11] | WANG M, JOEL A S, RAMSHAW C, et al. Process intensification for post-combustion CO2 capture with chemical absorption:a critical review[J]. Applied Energy, 2015, 158:275-291. |
[12] | 郭东方, 王金意, Gabriel da Silva, 等. CO2捕集溶剂氨基酸的反应活性与机制探讨[J]. 中国电机工程学报, 2013, (32):29-33. GUO D F, WANG J Y, GABRIEL D S, et al. Reactivity and mechanism study of CO2 with amino as carbon capture solvents[J]. Proceedings of the CSEE, 2013, (32):29-33. |
[13] | PUXTY G, ROWLAND R, ALLPORT A, et al. Carbon dioxide postcombustion capture:a novel screening study of the carbon dioxide absorption performance of 76 amines[J]. Environmental Science & Technology, 2009, 43(16):6427. |
[14] | ARSHAD M W, SOLMS N V, THOMSEN K, et al. Heat of absorption of CO2 in aqueous solutions of DEEA, MAPA and their mixture[J]. Energy Procedia, 2013, 37(37):1532-1542. |
[15] | 余景文, 王淑娟. 氨法脱碳模拟中热力学模型的比较[J]. 燃烧科学与技术, 2015, 21(5):394-402. YU J W, WANG S J. Comparison of thermodynamic models for carbon capture with aqueous ammonia[J]. Journal of Combustion Science and Technology, 2015, 21(5):394-402. |
[16] | ZHANG M, GUO Y. Process simulations of large-scale CO2 capture in coal-fired power plants using aqueous ammonia solution[J]. International Journal of Greenhouse Gas Control, 2013, 16(10):61-71. |
[17] | YU H, XIANG Q, FANG M, et al. Promoted CO2 absorption in aqueous ammonia[J]. Greenhouse Gases Science & Technology, 2012, 2(3):200-208. |
[18] | YU J, WANG S, YU H. Experimental studies and rate-based simulations of CO2 absorption with aqueous ammonia and piperazine blended solutions[J]. International Journal of Greenhouse Gas Control, 2016, 50:135-146. |
[19] | 申淑锋, 冯晓霞, 赵瑞红. 活化碳酸钾溶液吸收CO2的动力学研究[J]. 高校化学工程学报, 2013, (5):903-909. SHEN S F, FENG X X, ZHAO R H. Kinetics of CO2 absorption by promoted aqueous potassium carbonate solution[J]. Journal of Chemical Engineering of Chinese Universities, 2013, (5):903-909. |
[20] | KHODAYARI A. Experimental and theoretical study of carbon dioxide absorption into potassium carbonate solution promoted with enzyme[D]. University of Illinois at Urbana-Champaign, 2010. |
[21] | ROCHELLE G T, CULLINANE J T, HILLIARD M, et al. CO2 capture by absorption with potassium carbonate[R]. Office of Scientific & Technical Information Technical Reports, 2005. |
[22] | SANYAL D, VASISHTHA N, SARAF D N. Modeling of carbon dioxide absorber using hot carbonate process[J]. Industrial & Engineering Chemistry Research, 1988, 27(11):2149-2156. |
[23] | ARONU U E, HESSEN E T, HAUG-WARBERG T, et al. Vapor-liquid equilibrium in amino acid salt system:experiments and modeling[J]. Chemical Engineering Science, 2011, 66(10):2191-2198. |
[24] | SONG H J, PARK S, KIM H, et al. Carbon dioxide absorption characteristics of aqueous amino acid salt solutions[J]. International Journal of Greenhouse Gas Control, 2012, 11(6):64-72. |
[25] | ERGA O, JULIUSSEN O, LIDAL H. Carbon dioxide recovery by means of aqueous amines[J]. Energy Conversion & Management, 1995, 36(6-9):387-392. |
[26] | MAJCHROWICZ M E, BRILMAN D W F, GROENEVELD M J. Precipitation regime for selected amino acid salts for CO2 capture from flue gases[J]. Energy Procedia, 2009, 1(1):979-984. |
[27] | WASSERSCHEID P. Ionic Liquids in Synthesis[M]. Wiley-VCH, 2003:25-26. |
[28] | WELTON T. ChemInform abstract:room-temperature ionic liquids. Solvents for synthesis and catalysis[J]. ChemInform, 1999, 30(46). DOI:10.1002/chin.199946295. |
[29] | PINTO D D D, KNUUTILA H, FYTIANOS G, et al. CO2 post combustion capture with a phase change solvent. Pilot plant campaign[J]. International Journal of Greenhouse Gas Control, 2014, 31:153-164. |
[30] | 张政, 刘彪, 覃显业, 等. 相变溶剂吸收CO2研究进展[J]. 材料导报, 2014, 28(21):94-99. ZHANG Z, LIU B, QIN X Y, et al. Progress in CO2 capture using phase changing solvents.[J]. Materials Review, 2014, 28(21):94-99. |
[31] | 沈超, 李瑶瑶, 刘颖颖, 等. DMBA-DEEA-水三元吸收剂的CO2吸收解吸特性[J]. 现代化工, 2017, (6):141-145. SHEN C, LI Y Y, LIU Y Y, et al. Absorption and desorption performances of DMBA-DEEA-water against CO2[J]. Modern Chemical Industry, 2017, (6):141-145. |
[32] | TAN Y H. Study of CO2-absorption into thermomorphic lipophilic amine solvents[D]. Australia:der Technischen Universitat Dortmund, 2010. |
[33] | XU Z, WANG S, LIU J, et al. Solvents with low critical solution temperature for CO2 capture[J]. Energy Procedia, 2012, 23(2):64-71. |
[34] | ZHANG W, CUI C, MAO M, et al. Development of MEA-based CO2 phase change absorbent[J]. Applied Energy, 2017, 195:316-323. |
[35] | 徐志成. 1, 4丁二胺/N, N-二乙基乙醇胺体系吸收二氧化碳的研究[D]. 北京:清华大学, 2014. XU Z C. Absorption of CO2 with aqueous BEA/DEEA blend system[D]. Beijing:Tsinghua University, 2014. |
[36] | ZHANG X H. Studies on multiphase CO2 capture systems[D]. Dortmund:TU Dortmund University, 2007. |
[37] | ZHANG J, AGAR D W, ZHANG X, et al. CO2 absorption in biphasic solvents with enhanced low temperature solvent regeneration[J]. Energy Procedia, 2011, 4(1):67-74. |
[38] | ZHANG J, QIAO Y, AGAR D W. Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture[J]. Energy Procedia, 2012, 23(2):92-101. |
[39] | ZHANG J, QIAO Y, AGAR D W. Intensification of low temperature thermomorphic biphasic amine solvent regeneration for CO2 capture[J]. Chemical Engineering Research & Design, 2012, 90(6):743-749. |
[40] | 汪明喜, 方梦祥, 汪桢, 等. 相变吸收剂对CO2吸收与再生特性[J]. 浙江大学学报(工学版), 2013, 47(4):662-668. WANG M X, FANG M X, WANG Z, et al. CO2 absorption and desorption by phase transition lipophilic amine solvents[J].Journal of Zhejiang University(Engineering Science), 2013, 47(4):662-668. |
[41] | 汪明喜. 基于燃煤烟气CO2捕集的相变吸收剂试验研究[D]. 杭州:浙江大学, 2013. WANG M X. Experimental study of phase transition solvents for CO2 capture from coal-fired flue gas[D]. Hangzhou:Zhejiang University, 2013. |
[42] | ZHANG J, QIAO Y, WANG W, et al. Development of an energy-efficient CO2 capture process using thermomorphic biphasic solvents[J]. Energy Procedia, 2013, 37:1254-1261. |
[43] | XU Z, WANG S, ZHAO B, et al. Study on potential biphasic solvents:absorption capacity, CO2 loading and reaction rate[J]. Energy Procedia, 2013, 37:494-498. |
[44] | XU Z, WANG S, CHEN C. CO2 absorption by biphasic solvents:mixtures of 1, 4-butanediamine and 2-(diethylamino)-ethanol[J]. International Journal of Greenhouse Gas Control, 2013, 16(10):107-115. |
[45] | ALEIXO M, PRIGENT M, GIBERT A, et al. Physical and chemical properties of DMXTM solvents[J]. Energy Procedia, 2011, 4(1):148-155. |
[46] | RAYNAL L, ALIX P, BOUILLON P A, et al. The DMX™ process:an original solution for lowering the cost of post-combustion carbon capture[J]. Energy Procedia, 2011, 4:779-786. |
[47] | RAYNAL L, BRIOT P, DREILLARD M, et al. Evaluation of the DMX process for industrial pilot demonstration-methodology and results[J]. Energy Procedia, 2014, 63:6298-6309. |
[48] | CIFTJA A F, HARTONO A, SVENDSEN H F. Experimental study on phase change solvents in CO2 capture by NMR spectroscopy[J]. Chemical Engineering Science, 2013, 102(15):378-386. |
[49] | PINTO D D D, ZAIDY S A H, HARTONO A, et al. Evaluation of a phase change solvent for CO2 capture:absorption and desorption tests[J]. International Journal of Greenhouse Gas Control, 2014, 28(9):318-327. |
[50] | YE Q, WANG X, LU Y. Screening and evaluation of novel biphasic solvents for energy-efficient post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control, 2015, 39:205-214. |
[51] | ZHOU X, LIU F, LV B, et al. Evaluation of the novel biphasic solvents for CO2 capture:performance and mechanism[J]. International Journal of Greenhouse Gas Control, 2017, 60:120-128. |
[52] | LUO W, GUO D, ZHENG J, et al. CO2 absorption using biphasic solvent:blends of diethylenetriamine, sulfolane, and water[J]. International Journal of Greenhouse Gas Control, 2016, 53:141-148. |
[53] | HU L. CO2 capture from flue gas by phase transitional absorption[R]. Hampton:School of Engineering and Technology, Hampton University, 2009. |
[54] | BARZAGLI F, MANI F, PERUZZINI M. Novel water-free biphasic absorbents for efficient CO2 capture[J]. International Journal of Greenhouse Gas Control, 2017, 60:100-109. |
[55] | BARZAGLI F, LAI S, MANI F. A new class of single-component absorbents for reversible carbon dioxide capture under mild conditions[J]. ChemSusChem, 2015, 8(1):184. |
[56] | BARZAGLI F, MANI F, PERUZZINI M. A comparative study of the CO2 absorption in some solvent-free alkanolamines and in aqueous monoethanolamine (MEA)[J]. Environmental Science & Technology, 2016, 50(13):7239. |
[57] | KIM Y E, PARK J H, YUN S H, et al. Carbon dioxide absorption using a phase transitional alkanolamine-alcohol mixture[J]. Journal of Industrial & Engineering Chemistry, 2014, 20(4):1486-1492. |
[58] | YUN S H, KIM Y E, SEONG Y H, et al. CO2 absorption of chemical phase transitional absorbents:absorption capacity and reaction mechanism[C]//Games and Graphics. 2014:5-8. |
[59] | ROGERS R D. Materials science:reflections on ionic liquids[J]. Nature, 2007, 447(7147):917-918. |
[60] | YUAN X, ZHANG S, LIU J, et al. Solubilities of CO2 in hydroxyl ammonium ionic liquids at elevated pressures[J]. Fluid Phase Equilibria, 2007, 257(2):195-200. |
[61] | ZHANG J, ZHANG S, DONG K, et al. Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids[J]. Chemistry, 2006, 12(15):4021-4026. |
[62] | BATES E D, MAYTON R D, NTAI I, et al. CO2 capture by a task-specific ionic liquid[J]. Journal of the American Chemical Society, 2002, 124(6):926. |
[63] | 徐令君, 王淑娟, YANG Q. 离子液体-有机胺混合两相CO2吸收剂实验研究[C]//中国工程热物理学会(燃烧学). 2016. XU L J, WANG S J, YANG Q. CO2 absorption by mixtures of[BMIM]BF4 and MEA[C]//China National Symposium on Combustion. 2016. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[3] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[4] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[5] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[6] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[7] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[8] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[9] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[10] | 李木金, 胡松, 施德磐, 赵鹏, 高瑞, 李进龙. 环氧丁烷尾气溶剂吸收及精制工艺[J]. 化工学报, 2023, 74(4): 1607-1618. |
[11] | 吕阳光, 左培培, 杨正金, 徐铜文. 三嗪框架聚合物膜用于有机纳滤甲醇/正己烷分离[J]. 化工学报, 2023, 74(4): 1598-1606. |
[12] | 杨灿, 孙雪琦, 尚明华, 张建, 张香平, 曾少娟. 相变离子液体体系吸收分离CO2的研究现状及展望[J]. 化工学报, 2023, 74(4): 1419-1432. |
[13] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[14] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[15] | 王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||