化工学报 ›› 2019, Vol. 70 ›› Issue (3): 1027-1034.DOI: 10.11949/j.issn.0438-1157.20180785
收稿日期:
2018-07-12
修回日期:
2018-12-11
出版日期:
2019-03-05
发布日期:
2019-03-05
通讯作者:
徐磊
作者简介:
<named-content content-type="corresp-name">何昌春</named-content>(1980—),男,博士,工程师,<email>hechangchungz@163.com</email>|徐磊(1988—),男,硕士,工程师,<email>ryanxoo@foxmail.com</email>
Changchun HE1(),Lei XU1(),Wei CHEN1,Xiaofeng XU2,Pengwei OUYANG2
Received:
2018-07-12
Revised:
2018-12-11
Online:
2019-03-05
Published:
2019-03-05
Contact:
Lei XU
摘要:
国内某炼油厂常减压蒸馏装置的常压塔顶冷却系统换热器频繁出现腐蚀失效问题。基于物料衡算原理,采用逆向推导的方法及工艺过程模拟计算分析了该常压塔顶冷却系统的流动腐蚀失效机理,包括露点腐蚀、铵盐结晶沉积垢下腐蚀以及多相流冲刷腐蚀。注水是一种方便且非常有效的破除露点腐蚀和铵盐结晶沉积垢下腐蚀的工艺防护措施。但由于该炼油厂常压塔顶注水量有限,每台换热器采用不同的注水方式,依然出现了流动腐蚀失效问题。通过模拟计算,提出根据不同的注水量应选择不同的注水方式(总管注水、换热器定点注水和程控注水),从而实现该常顶冷却系统长周期稳定运行。
中图分类号:
何昌春, 徐磊, 陈伟, 徐晓峰, 欧阳鹏威. 常顶系统流动腐蚀机理预测及防控措施优化[J]. 化工学报, 2019, 70(3): 1027-1034.
Changchun HE, Lei XU, Wei CHEN, Xiaofeng XU, Pengwei OUYANG. Mechanism prediction of flow-induced corrosion and optimization of protection measures in overhead system of atmospheric tower[J]. CIESC Journal, 2019, 70(3): 1027-1034.
组分 | 体积分数/% | 组分 | 体积分数/% |
---|---|---|---|
氢气 | 0 | 1-丁烯 | 0.12 |
空气 | 1.98 | 反-2-丁烯 | 0 |
甲烷 | 2.23 | 顺-2-丁烯 | 0.54 |
乙烷 | 9.34 | 碳五以上 | 26.23 |
乙烯 | 0 | 一氧化碳 | 0 |
丙烷 | 20.43 | 二氧化碳 | 2.41 |
丙烯 | 0 | 硫化氢 | 0.26 |
异丁烷 | 9.47 | 合计 | 99.98 |
正丁烷 | 26.97 | 流量/(kmol·h-1) | 205.84 |
表1 常顶瓦斯气流量及组成
Table 1 Gas composition and flowrate in atmospheric tower overhead system
组分 | 体积分数/% | 组分 | 体积分数/% |
---|---|---|---|
氢气 | 0 | 1-丁烯 | 0.12 |
空气 | 1.98 | 反-2-丁烯 | 0 |
甲烷 | 2.23 | 顺-2-丁烯 | 0.54 |
乙烷 | 9.34 | 碳五以上 | 26.23 |
乙烯 | 0 | 一氧化碳 | 0 |
丙烷 | 20.43 | 二氧化碳 | 2.41 |
丙烯 | 0 | 硫化氢 | 0.26 |
异丁烷 | 9.47 | 合计 | 99.98 |
正丁烷 | 26.97 | 流量/(kmol·h-1) | 205.84 |
流量/(t·h-1) | 温度/℃ | 压力/MPa | 密度/(kg·m-3) | HK①/℃ | 10%/℃ | 50%/℃ | 90%/℃ | KK②/℃ |
---|---|---|---|---|---|---|---|---|
74.1 | 40.3 | 0.076 | 672.8 | 25 | 36 | 72 | 126 | 146 |
表2 常顶二级油工况及组成
Table 2 Second-stage oil process parameters and composition in atmospheric tower overhead system
流量/(t·h-1) | 温度/℃ | 压力/MPa | 密度/(kg·m-3) | HK①/℃ | 10%/℃ | 50%/℃ | 90%/℃ | KK②/℃ |
---|---|---|---|---|---|---|---|---|
74.1 | 40.3 | 0.076 | 672.8 | 25 | 36 | 72 | 126 | 146 |
流量/(t·h-1) | 温度/℃ | 压力/MPa | 密度/(kg·m-3) | HK/℃ | 5%/℃ | 10%/℃ | 50%/℃ | 90%/℃ | KK/℃ |
---|---|---|---|---|---|---|---|---|---|
133.8 | 90.1 | 0.127 | 726.4 | 48 | 74 | 83 | 118 | 161 | 167 |
表3 常顶一级油(出装置+回流)工况及组成
Table 3 First-stage oil (output + reflux) process parameters and composition in atmospheric tower overhead system
流量/(t·h-1) | 温度/℃ | 压力/MPa | 密度/(kg·m-3) | HK/℃ | 5%/℃ | 10%/℃ | 50%/℃ | 90%/℃ | KK/℃ |
---|---|---|---|---|---|---|---|---|---|
133.8 | 90.1 | 0.127 | 726.4 | 48 | 74 | 83 | 118 | 161 | 167 |
流量/ (t·h-1) | 温度/ ℃ | 压力/ MPa | 氨氮/(mg·L-1) | 硫/ (mg·L-1) | pH | 氯离子/(mg·kg-1) |
---|---|---|---|---|---|---|
13.06 | 40 | 0.1 | 78.6 | 76.5 | 7.56 | 72.6 |
表4 常顶含硫污水工况及组成
Table 4 Sour water process parameters and composition in atmospheric tower overhead system
流量/ (t·h-1) | 温度/ ℃ | 压力/ MPa | 氨氮/(mg·L-1) | 硫/ (mg·L-1) | pH | 氯离子/(mg·kg-1) |
---|---|---|---|---|---|---|
13.06 | 40 | 0.1 | 78.6 | 76.5 | 7.56 | 72.6 |
注水量/(t·h-1) | 液态水含量/%(mass) |
---|---|
21.2 | 5.26 |
22.0 | 8.76 |
22.3 | 10.01 |
23.6 | 15.05 |
25.1 | 20.22 |
26.7 | 25.09 |
28.5 | 29.92 |
表5 液态水量百分比与总注水量的关系
Table 5 Relationship between percentage of liquid water and injected water flowrate
注水量/(t·h-1) | 液态水含量/%(mass) |
---|---|
21.2 | 5.26 |
22.0 | 8.76 |
22.3 | 10.01 |
23.6 | 15.05 |
25.1 | 20.22 |
26.7 | 25.09 |
28.5 | 29.92 |
1 | 殷雪峰, 莫少明, 韩磊, 等. 常减压蒸馏装置塔顶空冷器腐蚀泄漏研究[J]. 石油化工腐蚀与防护, 2014, 31(4): 1-4. |
YinX F, MoS M, HanL, et al. Study on corrosion leakage of atmosphere tower overhead air coolers[J]. Corrosion & Protection in Petrochemical Industry, 2014, 31(4): 1-4. | |
2 | 郭辉. 常压蒸馏装置塔顶系统腐蚀机理分析及措施[J]. 石油化工腐蚀与防护, 2017, 34(4): 62-64 |
GuoH. Mechanic analysis and countermeasures of corrosion in overhead system of atmospheric distillation unit[J]. Corrosions & Protection in Petrochemical Industry, 2017, 34(4): 62-64. | |
3 | 侯芙生. 中国炼油技术[M]. 北京: 中国石化出版社, 2011: 53-98. |
HouF S. China Oil Refining Technology[M]. Beijing: Sinopec Press, 2011: 53-98. | |
4 | SlavchevaE, ShoneB, TurnbullA. Review of naphthenic acid corrosion in oil refining[J]. Brit. Corros. J., 1999, 34(2): 125-131. |
5 | SchemppP. PreußK. TrögerM. About the correlation between crude oil corrosiveness and results from corrosion monitoring in an oil refinery[J]. Corrosion, 2016, 72(6): 843-855. |
6 | JohnsonD, McateerG, ZukH. The safe process of high naphthenic acid content crude oils—refinery experience and mitigation studies[J]. NACE Corrosion, 2003, 03645. |
7 | WuX Q, JingH M, ZhengY G, et al. Erosion–corrosion of various oil-refining materials in naphthenic acid[J]. Wear, 2004, 256: 133-144. |
8 | ShargayC A. Effect of nonextractable chlorides on refinery corrosion and fouling[R]. NACE Publication 34105, Houston, TX, 2005. |
9 | CayardM S. Crude distillation unit—distillation tower overhead system corrosion[R]. NACE Publication 34109, Houston, TX, 2009. |
10 | WuB, LiX, LiY, et al. Hydrolysis reaction tendency of low-boiling organic chlorides to generate hydrogen chloride in crude oil distillation. Energy Fuels, 2016, 30(2): 1524-1530. |
11 | 关乐. 常压塔顶系统露点腐蚀控制研究[D]. 西安: 西安石油大学, 2014. |
GuanL. The controlling research on dew point corrosion at the top system of the atmospheric tower[D]. Xi’an: Xi’an Shiyou University, 2014. | |
12 | 段永锋, 于凤昌, 崔中强, 等. 蒸馏塔顶系统露点腐蚀与控制[J]. 石油化工腐蚀与防护, 2014, 31(5): 29-33. |
DuanY F, YuF C, CuiZ Q, et al. Dew-point corrosion in crude distillation unit overhead system and prevention[J]. Corrosion & Protection in Petrochemical Industry, 2014, 31(5): 29-33. | |
13 | 王凯. HCl-H2O体系露点腐蚀规律及预测方法研究[D]. 杭州: 浙江理工大学, 2013 |
WangK. Research of HCl-H2O system dew-point corrosion law and prediction method[D]. Hangzhou: Zhejiang Sci-Tech University, 2013. | |
14 | 王海博, 李云, 欧阳文彬, 等. Aspen Plus模拟预测常压塔顶冷凝系统露点及pH值[J]. 石油学报(石油加工), 2018, 34(3): 629-633. |
WangH B, LiY, OuyangW B, et al. Aspen Plus predict water dew point and pH value of the overhead condensing system of crude atmospheric distillation unit[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(3): 629-633. | |
15 | WuY M. Calculations estimate process stream depositions[J]. Oil Gas J., 1994, 92(1): 38-41. |
16 | 金浩哲, 叶浩杰, 偶国富, 等. 基于偏最小二乘法的加氢换热器NH4Cl结晶温度预测模型[J]. 石油学报(石油加工), 2017, 33(6): 1176-1182. |
JinH Z, YeH J, OuG F, et al. Predicting model of ammonium salt crystallization temperature based on partial least squares approach in a hydrogenation heat-exchanger[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(6): 1176-1182. | |
17 | MunsonB R, CayardM S. Thermodynamic derivations of various ammonium salt deposition equations common to the refinery industry[J]. Corrosion, 2018, 74(10): 1158-1163. |
18 | SunA, FanD. Prediction, monitoring, and control of ammonium chloride corrosion in refining processes[J]. Corrosion, 2010, 10359. |
19 | KarimiA, VerdonC, MartinJ L, et al. Slurry erosion behavior of thermally sprayed WC-M coatings[J]. Wear, 1995, 186-197: 480-486. |
20 | RogersP M, HutchingsI M, LittleJ A. Coatings and surface treatments for protection against low-velocity erosion-corrosion in fluidized beds[J]. Wear, 1995, 186-197: 238-246. |
21 | PiehlR L, SinghA, HarveyC. Corrosion of reactor effluent air coolers[C]// NACE Corrosion. 1997: 97490. |
22 | HorvathR J, CayardM S, KaneR D. Prediction and assessment of ammonium bisulfide corrosion under refinery sour water service conditions[C]// NACE Corrosion. 2006: 06576. |
23 | HorvathR J, LagadV V, SrinivasanS, et al. Prediction and assessment of ammonium bisulfide corrosion under refinery sour water service conditons-part 2[C]// NACE Corrosion. 2010: 10349. |
24 | American Petroleum Institute. Design, materials, fabrication, operation, and inspection guidelines for corrosion control in hydroprocessing reactor effluent air cooler (REAC) systems: API RP 932-B-2012(2014)[S]. Washington D C: API Publishing Services, 2014. |
25 | TangP, YangJ, ZhengZ J, et al. Failure analysis and prediction of pipes due to the interaction between multiphase flow and structure[J]. Eng. Fail. Anal., 2009, 16: 1749-1756. |
26 | 张建文, 苏国庆, 姜爱国. 液化气脱硫装置再生塔返塔管线弯头腐蚀失效机制分析[J]. 化工学报, 2018, 69(8): 3537-3547. |
ZhangJ W, SuG Q, JiangA G. Corrosion failure mechanism of return pipeline elbow of regeneration tower in LPG desulfurization unit[J]. CIESC Journal, 2018, 69(8): 3537-3547. | |
27 | 中华人民共和国工业和信息化部. 高硫原油加工装置设备和管道设计选材导则: SH/T 3096—2012[S]. 北京: 中石化出版社, 2012. |
Ministry of Industry and Information Technology. Material selection guideline for design of equipment and piping in units processing sulfur crude oils: SH/T 3096—2012[S]. Beijing: Sinopec Press, 2012. | |
28 | 中华人民共和国工业和信息化部. 高酸原油加工装置设备和管道设计选材导则: SH/T 3129—2012[S]. 北京: 中石化出版社, 2012. |
Ministry of Industry and Information Technology. Material selection guideline for design of equipment and piping in units processing acid crude oils: SH/T 3129—2012[S]. Beijing: Sinopec Press, 2012. | |
29 | 国家石油和化学工业局. 石油化工设备和管道涂料防腐蚀技术规范: SH 3022—1999[S]. 北京: 中石化出版社, 1999. |
State Bureau of Petroleum and Chemical Industry. Technical specification for the coating anticorrosion of equipment and piping in petrochemical industry: SH/T 3022—1999[S]. Beijing: Sinopec Press, 1999. | |
30 | WhiteR A. Materials Selection for Petroleum Refineries and Gathering Facilities[M]. Houston: NACE International, 1998: 1-30. |
[1] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[2] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[3] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[4] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[5] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[6] | 汪尔奇, 彭书舟, 杨震, 段远源. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
[7] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[8] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[9] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[10] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
[11] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[12] | 刘润竹, 储甜甜, 张孝阿, 王成忠, 张军营. α,ω-端羟基亚苯基氟硅聚合物的合成及性能[J]. 化工学报, 2023, 74(3): 1360-1369. |
[13] | 陈毓明, 历伟, 严翔, 王靖岱, 阳永荣. 初生态聚乙烯聚集态结构调控研究进展[J]. 化工学报, 2023, 74(2): 487-499. |
[14] | 周璇, 李孟亚, 孙杰, 岑振凯, 吕强三, 周立山, 王海涛, 韩丹丹, 龚俊波. 添加剂对氨基酸晶体生长的影响[J]. 化工学报, 2023, 74(2): 500-510. |
[15] | 高靖博, 孙强, 李青, 王逸伟, 郭绪强. 考虑水合物结构转变的含氢气体水合物相平衡模型[J]. 化工学报, 2023, 74(2): 666-673. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||