1 |
鲁波娜, 张景远, 王维, 等. FCC反应过程的CFD模拟进展[J]. 化工学报, 2016, 67(8): 3121-3132.
|
|
LuB N, ZhangJ Y, WangW, et al. CFD modeling of FCC reaction process: a review[J]. CIESC Journal, 2016, 67(8): 3121-3132.
|
2 |
刘蕾, 赵众, 陶兴文, 等. 催化裂化反应再生系统的建模与优化[J]. 石油化工自动化, 2009, 26(5): 26-30.
|
|
LiuL, ZhaoZ, TaoX W, et al. The modeling and optimization for FCC reactor-regenerator system[J]. Automation in Petro-Chemical Industry, 2009, 26(5): 26-30.
|
3 |
谢朝钢, 魏晓丽, 龚剑洪, 等. 催化裂化反应机理研究进展及实践应用[J]. 石油学报(石油加工) , 2017 , 33(2): 189-197.
|
|
XieC G, WeiX L, GongJ H, et al. Progress on chemistry of catalytic cracking reaction and its practice[J]. Acta Petroeli Sinica (Petroleum Processing Section), 2017, 33(2): 189-197.
|
4 |
刘梦溪, 卢春喜, 时铭显. 催化裂化后反应系统快分的研究进展[J]. 化工学报, 2016, 67(8): 3133-3145.
|
|
LiuM X, LuC X, ShiM X. Advances in quick separators of post-riser system in FRCC unit [J]. CIESC Journal, 2016, 67(8): 3133-3145.
|
5 |
熊凯, 卢春喜. 催化裂化(裂解)集总反应动力学模型研究进展[J]. 石油学报(石油加工), 2015, 31(2): 295-305.
|
|
XiongK, LuC X. Research progresses of lump kinetic model of FCC and catalytic pyrolysis[J]. Acta Petroeli Sinica (Petroleum Processing Section), 2015, 31(2): 295-305.
|
6 |
吴飞跃, 翁惠新, 罗世贤. FDFCC工艺中重油提升管催化裂化反应动力学模型[J].石油学报, 2008, 24(5): 540-546.
|
|
WuF Y, WengH X, LuoS X. Kinetic model for heavy oil catalytic cracking in riser of FCC process[J]. Acta Petroeli Sinica, 2008, 24(5): 540-546.
|
7 |
张忠洋, 李泽钦, 李宇龙, 等. GA辅助BP神经网络预测催化裂化装置汽油产率[J]. 石油炼制与化工, 2014, 45(7): 91-96.
|
|
ZhangZ Y, LiZ Q, LiY L, et al. Prediction of gasoline yield in FCC unit by GA aided BP neural network[J]. Petroleum Processing and Petrochemicals, 2014, 45(7): 91-96.
|
8 |
YiJ, HuangD, LiT F, et al. A novel framework for fault diagnosis using kernel partial least squares based on an optimal preference matrix[J]. IEEE Transaction on Industrial Electronics, 2017, 64(5): 4315-4324.
|
9 |
YiJ, HuangD, FuS Y, et al. Optimized relative transformation matrix using bacterial foraging algorithm for process fault detection[J]. IEEE Transaction on Industrial Electronics, 2016, 63(4): 2595-2605.
|
10 |
YiJ, BaiJ R, ZhouW, et al. Operating parameters optimization for the aluminum electrolysis process using an improved quantum-behaved particle swarm algorithm[J]. IEEE Transaction on Industrial Informatics, 2018, 14(8): 3405-3415.
|
11 |
MichalopoulosJ, PapadokonstadakisS, ArarnpatzisG, et al. Modelling of an industrial fluid catalytic cracking unit using neural networks[J]. Institution of Chemical Engineers, 2001, 79(3): 137-143.
|
12 |
LidT, StrandS. Real-time optimization of a cat cracker unit[J]. Computers & Chemical Engineering, 1997, 21(1/2): 887-892.
|
13 |
SankararaoB, GuptaK S. Multi-objective optimization of an industrial fluidized-bed catalytic cracking unit using two jumping gene adaptations of simulated annealing [J]. Computers and Chemical Engineering, 2007, 31: 1496-1515.
|
14 |
KasatB R, GuptaK S. Multi-objective optimization of an industrial fluidized-bed catalytic cracking unit using genetic algorithm with the jumping genes operator[J]. Computers and Chemical Engineering, 2003, 27: 1785-1800.
|
15 |
ChenC, YangB, YuanJ, et al. Establishment and solution of eight-lump kinetic model for FCC gasoline secondary reaction using particle swarm optimization[J]. Fuel, 2007, 86: 2325-2332.
|
16 |
WangY, WuL, YuanX. Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure[J]. Soft Computing, 2010, 14(3): 193-209.
|
17 |
肖晓伟, 肖迪, 林锦国, 等. 多目标优化问题的研究概述[J]. 计算机应用研究, 2011 , 28(3): 805-808.
|
|
XiaoX W, XiaoD, LinJ G, et al. Overview on multi-objective optimization problem research[J]. Application Research of Computers, 2011, 28(3): 805-808.
|
18 |
SunJ, FengB, XuW. Particle swarm optimization with particles having quantum behavior[C]//Proc. of the IEEE Congress on Evolutionary Computation. Portland, USA: IEEE, 2004: 325-331.
|
19 |
WangY N, WuL H, YuanX. Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure[J]. Soft Computing, 2010, 14(3): 193-209.
|
20 |
CoelhoL D S. Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems[J]. Expert Systems with Applications, 2010, 37(2): 1676-1683.
|
21 |
ZitzlerE, LaumannsM, ThieleL. SPEA2: improving the strength pareto evolutionary algorithm[C]//Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, 2002: 95-100.
|
22 |
SierraM R, CoelloC A C. Multi-objective particle swarm optimizer: a survey of the state-of-the-art[J]. International Journal of Computation Intelligence Research, 2006, 22(3): 287-308.
|
23 |
DebK, PratapA, AgarwalS, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
|
24 |
华长春, 王雅洁, 李军朋, 等. 基于NSGA-Ⅱ算法的高炉生产配料多目标优化模型建立[J]. 化工学报, 2016, 67(3): 1040-1047.
|
|
HuaC C, WangY J, LiJ P, et al. Multi-objective optimization model for blast furnace production and ingredients based on NSGA-II algorithm[J]. CIESC Journal, 2016, 67(3): 1040-1047.
|
25 |
YiJ, HuangD, FuS Y, et al. Multi-objective bacterial foraging optimization algorithm based on parallel cell entropy for aluminum electrolysis production process[J]. IEEE Transaction on Industrial Electronics, 2016, 63(4): 2488-2500.
|
26 |
易军, 黄迪, 李太福, 等. 基于拥挤距离排序的铝电解多目标优化[J].仪器仪表学报, 2015, 36(11): 2502-2509.
|
|
YiJ, HuangD, LiT F, et al. Optimization of aluminum electrolysis production process based on crowding distance sorting[J]. Chinese Journal of Scientific Instrument, 2015, 36(11): 2502-2509.
|
27 |
施展, 陈庆伟. 基于QPSO和拥挤距离排序的多目标量子粒子群优化算法[J]. 控制与决策, 2011, 26(4): 540-547.
|
|
ShiZ, ChenQ W. Multi-objective quantum-behaved particle swarm optimization algorithm based on QPSO and crowding distance sorting[J]. Control and Decision, 2011, 26 (4): 540-547.
|
28 |
DingS F, SuC Y, YuJ Z. An optimizing BP neural network algorithm based on genetic algorithm[J]. Artificial Intelligence Review, 2011, 36(2): 153-162.
|
29 |
刘朝华, 王慧娟, 吴春笃, 等. 基于BP神经网络的脉冲放电等离子体氧化酸性橙Ⅱ影响因素分析[J]. 化工学报, 2012, 63 (10): 3190-3195.
|
|
LiuC H, WangH J, WuC D, et al. Analysis of factors effecting acid orange 7 decoloration in pulsed discharge plasma system based on BP neural network mode[J]. CIESC Journal, 2012, 63(10): 3190-3195.
|