化工学报 ›› 2019, Vol. 70 ›› Issue (S1): 35-44.DOI: 10.11949/j.issn.0438-1157.20180914
张丽1(),由钢1,乔霄峰2,许光文1,3,刘国桢4,刘云义1()
收稿日期:
2018-08-13
修回日期:
2018-11-30
出版日期:
2019-03-31
发布日期:
2019-03-31
通讯作者:
刘云义
作者简介:
<named-content content-type="corresp-name">张丽</named-content>(1975—),女,博士,教授,<email>syhgxyzhangli@163.com</email>|刘云义(1960—),男,博士,教授,<email>liuyunyia@163.com</email>
基金资助:
Li ZHANG1(),Gang YOU1,Xiaofeng QIAO2,Guangwen XU1,3,Guozhen LIU4,Yunyi LIU1()
Received:
2018-08-13
Revised:
2018-11-30
Online:
2019-03-31
Published:
2019-03-31
Contact:
Yunyi LIU
摘要:
为研究氯碱电解槽内气液两相流动的压力波动特性和流型特点,对冷模电解槽阳极室内循环板上开口处的压力信号进行了混沌特性分析;利用高速摄像仪照相法及Kolmogorov熵下降法对流动形态进行了识别,绘制了流型图;利用流型图对不同电流密度下的两相流型进行了判定。结果表明,电解槽压力信号的吸引子具有分数维数,当电流密度大于6 kA·m-2时,Lyapunov指数大于0,说明电解槽内两相流动具有混沌特性;对于测压点位置及电解槽下部,当电流密度小于5 kA·m-2时,分别为射流充分发展段和孤立气泡流;电流密度为5 ~ 8 kA·m-2时为射流过渡段和合并气泡流;电流密度大于8 kA·m-2时为射流的初始段和合并气泡流。
中图分类号:
张丽, 由钢, 乔霄峰, 许光文, 刘国桢, 刘云义. 氯碱电解槽内压力波动的混沌分析及流型识别[J]. 化工学报, 2019, 70(S1): 35-44.
Li ZHANG, Gang YOU, Xiaofeng QIAO, Guangwen XU, Guozhen LIU, Yunyi LIU. Chaotic analysis of pressure fluctuation and identification of flow regime in chlor-alkali electrolyzer[J]. CIESC Journal, 2019, 70(S1): 35-44.
图1 氯碱电解槽阳极室冷模压力波动实验装置流程
Fig.1 Flow sheet of experimental setup for pressure fluctuation measurement in cold-model anode chamber of chlor-alkali electrolyzer
I/(kA·m-2) | Qg /(L·min-1) | Ql /(ml·s-1) | D | λ | K | ε/% | 流动状态 | |
---|---|---|---|---|---|---|---|---|
B点 | C点 | |||||||
3.0 | 2.47 | 1.41 | 5.135 | -0.0248 | 0.3166 | 3.05 | 充分发展段 | 孤立气泡流 |
4.0 | 3.29 | 1.88 | 4.735 | -0.0432 | 0.4849 | 4.00 | 充分发展段 | 孤立气泡流 |
5.0 | 4.12 | 2.36 | 4.507 | -0.0151 | 0.4676 | 4.70 | 过渡段 | 合并气泡流 |
6.0 | 4.95 | 2.83 | 4.288 | 0.0096 | 0.5703 | 5.75 | 过渡段 | 合并气泡流 |
7.0 | 5.77 | 3.31 | 4.169 | 0.0345 | 0.6373 | 6.83 | 过渡段 | 合并气泡流 |
8.0 | 6.60 | 3.78 | 4.169 | 0.0134 | 0.6183 | 7.98 | 过渡段 | 合并气泡流 |
表1 不同电流密度下电解槽内气液两相流动状态
Table 1 Flow patterns in cell at different current density
I/(kA·m-2) | Qg /(L·min-1) | Ql /(ml·s-1) | D | λ | K | ε/% | 流动状态 | |
---|---|---|---|---|---|---|---|---|
B点 | C点 | |||||||
3.0 | 2.47 | 1.41 | 5.135 | -0.0248 | 0.3166 | 3.05 | 充分发展段 | 孤立气泡流 |
4.0 | 3.29 | 1.88 | 4.735 | -0.0432 | 0.4849 | 4.00 | 充分发展段 | 孤立气泡流 |
5.0 | 4.12 | 2.36 | 4.507 | -0.0151 | 0.4676 | 4.70 | 过渡段 | 合并气泡流 |
6.0 | 4.95 | 2.83 | 4.288 | 0.0096 | 0.5703 | 5.75 | 过渡段 | 合并气泡流 |
7.0 | 5.77 | 3.31 | 4.169 | 0.0345 | 0.6373 | 6.83 | 过渡段 | 合并气泡流 |
8.0 | 6.60 | 3.78 | 4.169 | 0.0134 | 0.6183 | 7.98 | 过渡段 | 合并气泡流 |
1 | 赵国瑞.高电流密度自然循环复极式离子交换膜电解槽在氯碱工业的应用[J]. 氯碱工业, 2007, (11):11-18. |
ZhaoG R. Application of high current density natural circulation bipolar-type ion-exchange membrane electrolyzers[J]. Chlor-Alkali Industry, 2007, (11):11-18. | |
2 | 周云龙, 陈旭, 郭新田, 等. 三面加热窄矩形通道内气液两相流流型研究[J].原子能科学技术, 2018, 52(7): 1262-1267. |
ZhouY L, ChenX, GuoX T, et al. Study of gas-liquid two-phase flow pattern in three-side heating narrow rectangular channel[J]. Atomic Energy Science and Technology, 2018, 52(7): 1262 - 1267. | |
3 | 金光远, 韩月阳. 矩形通道内泡状流-弹状流转换边界判定方法[J].工程热物理学报, 2017, 38(10): 2208 - 2212. |
JinG Y, HanY Y. Criterion for predicting transition boundary from bubbly flow to slug flow in rectangular channels[J]. Journal of Engineering Thermophysics, 2017, 38(10): 2208-2212. | |
4 | 闫超星, 阎昌琪, 孙立成. 倾斜窄矩形通道内弹状流特性的实验研究[J]. 高校化学工程学报, 2015, 29(3): 551-556. |
YanC X, YanC Q, SunL C. Experimental investigation on characteristics of slug flow in a vertical narrow rectangular channel[J]. J. Chem. Eng. Chinese Univ., 2015, 29(3):551-556. | |
5 | ChoiC W, YuD I, KimM H. Adiabatic two-phase flow in rectangular microchannels with different aspect ratios (Ⅰ): Flow pattern, pressure drop and void fraction [J]. Int. J. Heat Mass Transfer, 2011, 54(1/2/3): 616-624. |
6 | WilmarthT, IshiiM. Two-phase flow regimes in narrow rectangular vertical and horizontal channels[J]. International Journal of Heat & Mass Transfer, 1994, 37(12):1749-1758. |
7 | WangJ F, HuangY P, WangY L. Photographic study on two-phase flow patterns of water in a single-side heated narrow rectangular channel[J]. J. Eng. Gas Turbines Power, 2011, 133(5): 052907. |
8 | 杨丽辉, 陶乐仁, 黄理浩, 等. 竖直矩形窄通道内水沸腾换热的流型研究[J].热能动力工程, 2014, 29(6): 622-626. |
YangL H, TaoL R, HuangL H, et al. Study of the water boiling heat exchange flow pattern in a vertical rectangular narrow channel [J]. Journal of Engineering for Thermal Energy & Power, 2014, 29(6): 622-626. | |
9 | XuJ L, ChengP, ZhaoT S. Gas-liquid two-phase flow regimes in rectangular channels with mini/micro gaps[J]. International Journal of Multiphase Flow, 1999, 25(3): 411-432. |
10 | HuangL, LiG, TaoL. Experimental investigation on the heat transfer characteristics and flow pattern in vertical narrow channels heated from one side[J]. Heat & Mass Transfer, 2016, 52(7): 1343-1357. |
11 | HibikiT, MishimaK. Flow regime transition criteria for upward two-phase flow in vertical narrow rectangular channels[J]. Nuclear Engineering and Design, 2001, 203(2): 117-131. |
12 | WongwisesS, PipathattakulM. Flow pattern, pressure drop and void fraction of two-phase gas-liquid flow in an inclined narrow annular channel[J]. Experimental Thermal & Fluid Science, 2006, 30(4): 345-354. |
13 | WangJ, HuangY, WangY, et al. Visualized investigation on flow regimes for vertical upward steam-water flow in a heated narrow rectangular channel[J]. Annals of Nuclear Energy, 2012, 45(1): 115-123. |
14 | JuliaJ E, OzarB, JeongJ J, et al. Flow regime development analysis in adiabatic upward two-phase flow in a vertical annulus[J]. International Journal of Heat & Fluid Flow, 2011, 32(1): 164-175. |
15 | 刘明言, 胡宗定.气液两相单孔鼓泡过程的混沌分析[J]. 化工学报, 2000, 51(3) : 338-343. |
LiuM Y, HuZ D. Chaos bubbling in gas-liquid two-phase bubble column with a single orifice[J]. Journal of Chemical Industry and Engineering (China),2000, 51(3) : 338-343. | |
16 | WuJ J, WangD, LiL H, et al. Characterization of flow regimes in bubble columns through CCF analysis of pressure fluctuations[J]. Chemical Engineering & Technology, 2010, 28(10): 1109-1113. |
17 | 金宁德, 郑桂波, 胡凌云. 垂直上升管中气液两相流电导波动信号的混沌特性分析[J].地球物理学报, 2006, 49(5): 1552 -1560. |
JinN D, ZhengG B, HuL Y. Chaotic characteristic analysis of conductance signals of gas-liquid two-phase flow in vertical upward pipe[J].Chinese J. Geophys., 2006, 49(5): 1552-1560. | |
18 | ZhuH Y, LiZ X, YangX T, et al. Flow regime identification for upward two-phase flow in helically coiled tubes[J]. Chemical Engineering Journal, 2016, 308(1):606-618. |
19 | KimT H, ChalgeriV S, YoonW. Visual observations of flow patterns in downward air-water two-phase flows in a vertical narrow rectangular channel[J]. Annals of Nuclear Energy, 2018, 114: 384-394. |
20 | WambsganssM W, JendrzejczykJ A, FranceD M. Determination and characteristics of the transition to two-phase slug flow in small horizontal channel[J]. Journal of Fluids Engineering, 1994, 116: 140-146. |
21 | CaiY, WambsganssM W, JendrzejczykJ A. Application of chaos theory in identification of two-phase flow patterns and transitions in a small, horizontal, rectangular channel[J]. Journal of Fluids Engineering, 1996, 118(2): 383-390. |
22 | 白博峰, 郭烈锦, 陈学俊. 空气水两相流压力波动现象非线性分析[J].工程热物理学报, 2001, 22(3): 359-362. |
BaiB F, GuoL J, ChenX J. Nonlinear analysis on pressure fluctuation phenomena of air-water two-phase flow[J]. Journal of Engineering Thermophysics, 2001, 22(3):359-362. | |
23 | 孙斌, 周云龙. 水平管内空气-水两相流流型的混沌特征[J].哈尔滨工业大学学报, 2006, 38(11):1963-1967. |
SunB, ZhouY L. Characterization of flow regimes of air-water two-phase flow in horizontal pipe using chaotic analysis[J]. Journal of Harbin Institute of Technology,2006, 38(11):1963-1967. | |
24 | 金宁德, 聂向斌, 任英玉,等. 基于Kolmogorov熵时间序列分析的垂直上升管中油水两相流流型表征[J]. 化工学报, 2003, 54(7): 936-941. |
JinN D, NieX B, RenY Y, et al. Characterization of oil/water two-phase flow patterns in vertical upward pipes based on Kolmogorov entropy time series analysis[J]. Journal of Chemical Industry and Engineering (China),2003, 54(7): 936-941. | |
25 | LetzelH M, SchoutenJ C, KrishnaR, et al. Characterization of regimes and regime transitions in bubble columns by chaos analysis of pressure signals[J]. Chemical Engineering Science, 1997, 52(24): 4447-4459. |
26 | RuzickaM C, DrahosJ, ZahradnlkJ, et al. Intermittent transition from bubbling to jetting regime in gas-liquid two phase flows[J]. Multiphase Flow, 1997, 23(4): 671-682. |
27 | TaofeeqH, Al-DahhanM. Comparison between the new mechanistic and the chaos scale-up methods for gas-solid fluidized beds[J]. Chinese Journal of Chemical Engineering, 2018, 26(6):1401-1411. |
28 | 程易, 魏飞, 王振宇,等. 高速气固流化床局部瞬态行为混沌分析[J]. 化工学报, 2000, 51(2):169-175. |
ChengY, WeiF, WangZ Y, et al. Chaotic analysis of transient behavior in high-velocity fluidized beds[J]. Journal of Chemical Industry and Engineering (China), 2000, 51(2):169-175. | |
29 | NedeltchevS, AradhyaS, ZaidF, et al. Flow regime identification in three multiphase reactors based on Kolmogorov entropies derived from gauge pressure fluctuations[J]. Journal of Chemical Engineering of Japan, 2012, 45(9): 757-764. |
30 | 张丽, 戴俊, 刘秀明,等. 氯碱工业离子膜电解槽内气液两相流动特性[J]. 高校化学工程学报,2017, 31(1): 21-30. |
ZhangL, DaiJ, LiuX M, et al. Gas-liquid two-phase flow characteristics in a ion-exchange membrane electrolysis cell of chlor-alkali industry[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(1): 21- 30. | |
31 | 岳雯婷, 张丽, 刘秀明,等. 电流密度对氯碱工业离子膜电解槽传递特性影响[J]. 化工学报, 2015, 66(3): 915-923. |
YueW T, ZhangL, LiuX M, et al. Influence of current density on transfer characteristics in electrolysis cell of chlor-alkali industry[J]. CIESC Journal, 2015, 66(3): 915-923. | |
32 | 肖楠, 金宁德. 基于混沌吸引子形态特性的两相流流型分类方法研究[J].物理学报, 2007, 56(9): 5149-5157. |
XiaoN, JinN D. Research on flow pattern classification method of two-phase flow based on chaotic attractor morphological characteristic[J]. Acta Physica Sinica, 2007, 56(9): 5149-5157. | |
33 | ZhangL, YueC J, KangJ Z, et al. Influence of separation chamber structure on the performance of the anode chamber of a chlor-alkali cell[J]. Journal of the Electrochemical Society, 2017, 164(4):E29-E35. |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[4] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[5] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[6] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[9] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[10] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[11] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[12] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[13] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[14] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[15] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||