化工学报 ›› 2019, Vol. 70 ›› Issue (1): 24-31.DOI: 10.11949/j.issn.0438-1157.20180970
收稿日期:
2018-08-30
修回日期:
2018-10-24
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
郭亚军
作者简介:
耿宸(1994—),女,硕士研究生,<email>Gengchench@163.com</email>|郭亚军(1966—),女,硕士,副教授,<email>879400635@qq.com</email>
基金资助:
Chen GENG1(),Yajun GUO1(),Song FENG2,Qincheng BI2
Received:
2018-08-30
Revised:
2018-10-24
Online:
2019-01-05
Published:
2019-01-05
Contact:
Yajun GUO
摘要:
为实现超临界压力下吸热型碳氢燃料密度的准确测量,以相关测量技术为基础,设计搭建了一套密度在线测量系统。该系统在间距148 mm的管道上下游安装两只具有相同热电特性的K型热电偶作为互相关法的传感器,通过对热电偶检测到的随机温度信号进行相关计算,得出该信号经过上下游热电偶的延迟时间,计算得到流体截面的平均流速,在已知质量流量后,根据质量守恒定律进而求得流体密度。采用纯物质十二烷及质量比1∶1正辛烷/正庚烷二元混合物标定测量系统精度,实验结果与文献值的最大误差在±1.2%以内,平均相对误差小于0.6%。在此基础上,对压力p = 3.0、4.0、5.0 MPa,温度T = 302.0~529.6 K,吸热型碳氢燃料密度进行测量,该方法的应用为超临界压力下吸热型碳氢燃料密度的准确测量提供了新思路。
中图分类号:
耿宸, 郭亚军, 冯松, 毕勤成. 随机温度信号互相关法测量吸热型碳氢燃料密度[J]. 化工学报, 2019, 70(1): 24-31.
Chen GENG, Yajun GUO, Song FENG, Qincheng BI. Density measurements of endothermic hydrocarbon fuel using random temperature signal cross-correlation[J]. CIESC Journal, 2019, 70(1): 24-31.
L/mm | ρxy(τ) |
---|---|
80 | 0.8967 |
148 | 0.9259 |
180 | 0.8476 |
228 | 0.7933 |
280 | 0.7581 |
表1 不同实验段长度下的相关系数
Table 1 Dependence of correlation coefficient ρxy(τ) on thermocouples’ spacing L
L/mm | ρxy(τ) |
---|---|
80 | 0.8967 |
148 | 0.9259 |
180 | 0.8476 |
228 | 0.7933 |
280 | 0.7581 |
T/K | ρexp/(kg/m3) | ρlit/(kg/m3) | (Δρ/ρ)/% |
---|---|---|---|
298.8 | 752.0 | 748.8 | 0.43 |
307.6 | 748.1 | 742.5 | 0.76 |
318.0 | 737.1 | 735.0 | 0.29 |
329.3 | 728.5 | 726.9 | 0.22 |
338.7 | 716.9 | 720.2 | -0.46 |
348.1 | 709.4 | 713.5 | -0.58 |
358.6 | 703.6 | 706.0 | -0.34 |
368.0 | 695.8 | 699.2 | -0.49 |
378.4 | 688.9 | 691.7 | -0.41 |
388.1 | 686.7 | 684.7 | 0.30 |
398.2 | 674.8 | 677.3 | -0.36 |
407.2 | 672.4 | 670.6 | 0.26 |
417.6 | 661.7 | 662.9 | -0.18 |
426.9 | 658.2 | 655.9 | 0.35 |
436.4 | 650.8 | 648.7 | 0.33 |
445.1 | 640.7 | 642.0 | -0.2 |
表2 正十二烷密度测量值与参考值对比
Table 2 Relative error (Δρ/ρ) of experimental density (ρexp) of n-dodecane compared with published data (ρlit) at 5 MPa
T/K | ρexp/(kg/m3) | ρlit/(kg/m3) | (Δρ/ρ)/% |
---|---|---|---|
298.8 | 752.0 | 748.8 | 0.43 |
307.6 | 748.1 | 742.5 | 0.76 |
318.0 | 737.1 | 735.0 | 0.29 |
329.3 | 728.5 | 726.9 | 0.22 |
338.7 | 716.9 | 720.2 | -0.46 |
348.1 | 709.4 | 713.5 | -0.58 |
358.6 | 703.6 | 706.0 | -0.34 |
368.0 | 695.8 | 699.2 | -0.49 |
378.4 | 688.9 | 691.7 | -0.41 |
388.1 | 686.7 | 684.7 | 0.30 |
398.2 | 674.8 | 677.3 | -0.36 |
407.2 | 672.4 | 670.6 | 0.26 |
417.6 | 661.7 | 662.9 | -0.18 |
426.9 | 658.2 | 655.9 | 0.35 |
436.4 | 650.8 | 648.7 | 0.33 |
445.1 | 640.7 | 642.0 | -0.2 |
T/K | ρexp/(kg/m3) | ρlit/(kg/m3) | (Δρ/ρ)/% |
---|---|---|---|
303.1 | 681.8 | 687.3 | -0.80 |
313.3 | 673.1 | 679.2 | -0.90 |
323.0 | 668.5 | 671.4 | -0.43 |
332.7 | 661.3 | 663.6 | -0.35 |
344.1 | 656.9 | 654.2 | 0.41 |
353.2 | 644.4 | 646.8 | -0.37 |
362.9 | 640.8 | 638.6 | 0.34 |
372.3 | 633.3 | 630.7 | 0.41 |
383.2 | 625.2 | 621.3 | 0.63 |
393.0 | 610.2 | 612.7 | -0.41 |
405.1 | 605.3 | 601.8 | 0.58 |
413.8 | 589.5 | 593.8 | -0.72 |
424.2 | 587.4 | 584.1 | 0.56 |
433.2 | 572.5 | 575.4 | -0.50 |
443.0 | 561.6 | 565.6 | -0.71 |
453.7 | 556.4 | 554.7 | 0.30 |
463.1 | 549.1 | 544.8 | 0.80 |
474.4 | 537.9 | 532.3 | 1.06 |
表3 正辛烷/正庚烷混合物密度测量值与参考值对比
Table 3 Relative error (Δρ/ρ) of experimental density (ρexp) of binary mixture of n-octane and n-heptane compared with published data (ρlit) at 5.1 MPa
T/K | ρexp/(kg/m3) | ρlit/(kg/m3) | (Δρ/ρ)/% |
---|---|---|---|
303.1 | 681.8 | 687.3 | -0.80 |
313.3 | 673.1 | 679.2 | -0.90 |
323.0 | 668.5 | 671.4 | -0.43 |
332.7 | 661.3 | 663.6 | -0.35 |
344.1 | 656.9 | 654.2 | 0.41 |
353.2 | 644.4 | 646.8 | -0.37 |
362.9 | 640.8 | 638.6 | 0.34 |
372.3 | 633.3 | 630.7 | 0.41 |
383.2 | 625.2 | 621.3 | 0.63 |
393.0 | 610.2 | 612.7 | -0.41 |
405.1 | 605.3 | 601.8 | 0.58 |
413.8 | 589.5 | 593.8 | -0.72 |
424.2 | 587.4 | 584.1 | 0.56 |
433.2 | 572.5 | 575.4 | -0.50 |
443.0 | 561.6 | 565.6 | -0.71 |
453.7 | 556.4 | 554.7 | 0.30 |
463.1 | 549.1 | 544.8 | 0.80 |
474.4 | 537.9 | 532.3 | 1.06 |
p=3 MPa | p=4 MPa | p=5 MPa | ||||
---|---|---|---|---|---|---|
T/K | ρexp/ (kg/m3) | T/K | ρexp/ (kg/m3) | T/K | ρexp/ (kg/m3) | |
302.3 | 793.5 | 302.2 | 793.8 | 302.0 | 795.5 | |
328.5 | 777.0 | 329.9 | 781.4 | 327.6 | 781.0 | |
349.8 | 763.7 | 349.3 | 764.8 | 347.5 | 769.4 | |
374.7 | 750.2 | 376.7 | 751.7 | 376.8 | 752.1 | |
400.1 | 739.5 | 399.4 | 738.8 | 399.5 | 739.0 | |
425.0 | 719.1 | 424.8 | 719.5 | 424.4 | 723.1 | |
449.8 | 699.2 | 450.8 | 702.0 | 448.5 | 707.1 | |
474.2 | 682.3 | 475.3 | 683.6 | 475.1 | 687.4 | |
498.6 | 661.7 | 501.3 | 664.0 | 501.6 | 666.5 | |
523.8 | 638.7 | 529.6 | 639.0 | 523.7 | 649.2 |
表4 吸热型碳氢燃料EHF密度测量值
Table 4 Experimental density (ρexp) of endothermic hydrocarbon fuel under T = 302.0—529.6 K, supercritical pressures
p=3 MPa | p=4 MPa | p=5 MPa | ||||
---|---|---|---|---|---|---|
T/K | ρexp/ (kg/m3) | T/K | ρexp/ (kg/m3) | T/K | ρexp/ (kg/m3) | |
302.3 | 793.5 | 302.2 | 793.8 | 302.0 | 795.5 | |
328.5 | 777.0 | 329.9 | 781.4 | 327.6 | 781.0 | |
349.8 | 763.7 | 349.3 | 764.8 | 347.5 | 769.4 | |
374.7 | 750.2 | 376.7 | 751.7 | 376.8 | 752.1 | |
400.1 | 739.5 | 399.4 | 738.8 | 399.5 | 739.0 | |
425.0 | 719.1 | 424.8 | 719.5 | 424.4 | 723.1 | |
449.8 | 699.2 | 450.8 | 702.0 | 448.5 | 707.1 | |
474.2 | 682.3 | 475.3 | 683.6 | 475.1 | 687.4 | |
498.6 | 661.7 | 501.3 | 664.0 | 501.6 | 666.5 | |
523.8 | 638.7 | 529.6 | 639.0 | 523.7 | 649.2 |
1 | HouL Y, DongN, SunD P. Heat tansfer and thermal cracking behavior of hydrocarbon fuel[J]. Fuel, 2013, 103(1): 1132-1137. |
2 | FryR S. A century of ramjet propulsion technology evolution[J]. Journal of Propulsion and Power, 2004, 20(1): 27-58. |
3 | 赵祖亮. 吸热型碳氢燃料结焦与超临界压力下传热性质研究[D]. 杭州: 浙江大学, 2006. |
ZhaoZ L. Study on the heat transfer properties of heat absorbing hydrocarbon fuel coking under supercritical pressure [D]. Hangzhou: Zhejiang University, 2006. | |
4 | JanićM. Greening commercial air transportation by using liquid hydrogen (LH2) as a fuel[J]. International Journal of Hydrogen Energy, 2014, 39(29): 16426-16441. |
5 | StromanR O, SchuetteM W, SwiderL K, et al. Liquid hydrogen fuel system design and demonstration in a small long endurance air vehicle[J]. International Journal of Hydrogen Energy, 2014, 39(21): 11279-11290. |
6 | ZhongF Q, FanX J, YuG, et al. Heat transfer of aviation kerosene at supercritical conditions[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(3): 543-550. |
7 | 李勋锋, 仲峰泉, 范学军, 等. 超临界压力下航空煤油圆管流动和传热的数值研究[J]. 推进技术, 2010, 31(4): 467-472. |
LiX F, ZhongF Q, FanX J, et al. Numerical study on flow and heat transfer of round tubes of aviation kerosene under supercritical pressure[J]. Propulsion Technology, 2010, 31(4): 467-472. | |
8 | PioroI, MokryS. Heat Transfer Theoretical Analysis, Experimental Investigations and Industrial Systems[M]//Rijeka, Croatia: InTech, 2011: 574-591. |
9 | XuG Q, JiaZ X, WenJ, et al. Thermal-conductivity measurements of aviation kerosene RP-3 from (285 to 513) K at sub- and supercritical pressures[J]. International Journal of Thermophysics, 2015, 36(4): 620-632. |
10 | TanakaK, HigashiY. Measurements of the isobaric specific heat capacity and density for dimethyl ether in the liquid state[J]. Journal of Chemical & Engineering Data, 2010, 55(8): 2658-2661. |
11 | RasaH. Measurements and calculations of hydrocarbon mixtures liquid density by simple cubic equations of state[J]. Physics & Chemistry of Liquids, 2009, 47(2): 140-147. |
12 | WenJ, ZhangN, FuY, et al. Density measurements of propellant EHF-TU at (3 to 7) MPa supercritical pressures[J]. Journal of Chemical & Engineering Data, 2018, 63(6): 1961-1968. |
13 | EdwardsT. Cracking and deposition behavior of supercritical hydrocarbon aviation fuel[J]. Combustion Science and Technology, 2006, 178(1/2/3): 307-334. |
14 | JiangR P, LiuG Z, ZhangX W. Thermal cracking of hydrocarbon aviation fuels in regenerative cooling microchannels[J]. Energy and Fuels, 2013, 27(5): 2563-2577. |
15 | ZhangC B, XuG Q, GaoL, et al. Experimental investigation on heat transfer of a specific fuel (RP-3) flows through downward tubes at supercritical pressure[J]. Journal of Supercritical Fluids, 2012, 72(9): 90-99. |
16 | FandiñOO, ComuñAsM J P, LugoL, et al. Density measurements under pressure for mixtures of pentaerythritol ester lubricants. Analysis of a density viscosity relationship[J]. Journal of Chemical and Engineering Data, 2007, 52(4): 1429-1436. |
17 | LeiY T, ChenZ Y, AnX Q, et al. Measurements of density and heat capacity for binary mixtures x benzonitrile + (1-x) (octane or nonane) [J]. Journal of Chemical and Engineering Data, 2010, 55(10): 4154-4161 |
18 | FedeleL, PernecheleF, BobboS, et al. Compressed liquid density measurements for 1, 1, 1, 2, 3, 3, 3-heptafluoropropane (R227ea)[J]. Journal of Chemical and Engineering Data, 2007, 52(5): 1955-1959. |
19 | NikitinE D, PavlovP A, SkripovP V. Measurement of the critical properties of thermally unstable substances and mixtures by the pulse-heating method[J]. Journal of Chemical Thermodynamics, 1993, 25(7): 869-880. |
20 | LiuF Y, XieD Y, YuM H. Formulae for density and water content of specimen in the triaxial test using two types of γ-ray[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(4): 569-572. |
21 | GuanX D, ChenG. The measurement of soil moisture and density research and application design using the principle of dual-energy ε-rays transmission[J]. International Conference on Electric Information and Control Engineering, 2011, 45(11): 21-26. |
22 | YangZ, BiQ, YongG, et al. Design of a gamma densitometer for hydrocarbon fuel at high temperature and supercritical pressure[J]. Journal of Chemical & Engineering Data, 2014, 59(11): 3335-3343. |
23 | DengH W, ZhangC B, XüG Q, et al. Density measurements endothermic hydrocarbon fuel at sub- and super-critical conditions[J]. Journal of Chemical and Engineering Data, 2011, 56(6): 2980-2986. |
24 | 徐苓安. 相关流量测量技术[M]. 天津: 天津大学出版社, 1988: 217-227. |
Xu L A, Related Flow Measurement Technology [M]. Tianjin: Tianjin University Press, 1988: 217-227. | |
25 | 薛倩, 王化祥, 马敏, 等. 基于改进互相关法的气固两相栓塞流速测量[J]. 化工学报, 2014, 65(10): 3820-3828. |
XueQ, WangH X, MaM, et al. Flow velocity measurement of gas-solid two-phase embolization based on improved cross correlation method[J]. Journal of chemical engineering, 2014, 65(10): 3820-3828. | |
26 | 张绍志, 蒋青, 白崇俨, 等. 基于温度互相关法流量测量实验[J]. 化工学报, 2014, 65(S2): 124-128. |
ZhangS Z, JiangQ, BaiC Y, et al. Flow measurement experiments based on temperature cross correlation method [J]. Journal of chemical engineering, 2014, 65(S2): 124-128. | |
27 | JinB T, JingK, LiuJ, et al. Pyrolysis and coking of endothermic hydrocarbon fuel in regenerative cooling channel under different pressures[J]. Journal of Analytical and Applied Pyrolysis, 2017, 125: 384-395. |
28 | LemmonE W, HuberM L. Thermodynamic properties of n-dodecane[J]. Energy and Fuels, 2004, 18(4): 960-967. |
29 | KunzO, WagnerW. The GERG-2004 wide-range equation of state of natural gases and other mixtures[J]. Journal of Chemical & Engineering Data, 2007, 57(11): 3032-3091. |
30 | KunzO, WagnerW. The GERG-2008 wide-range equation of state for natural gases and other mixtures: an expansion of GERG-2004[J]. Journal of Chemical & Engineering Data, 2012, 57(11): 3032-3091. |
[1] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[2] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[3] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[4] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[5] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[6] | 邵伟明, 韩文学, 宋伟, 杨勇, 陈灿, 赵东亚. 基于分布式贝叶斯隐马尔可夫回归的动态软测量建模方法[J]. 化工学报, 2023, 74(6): 2495-2502. |
[7] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[8] | 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053. |
[9] | 陈家辉, 杨鑫泽, 陈顾中, 宋震, 漆志文. 以离子液体密度为例的分子性质预测模型建模方法探讨[J]. 化工学报, 2023, 74(2): 630-641. |
[10] | 张家庆, 蒋榕培, 史伟康, 武博翔, 杨超, 刘朝晖. 煤基/石油基火箭煤油高参数黏温特性与组分特性研究[J]. 化工学报, 2023, 74(2): 653-665. |
[11] | 杜峰, 尹思琦, 罗辉, 邓文安, 李传, 黄振薇, 王文静. H2在Mo x S y 团簇上吸附解离的尺寸效应研究[J]. 化工学报, 2022, 73(9): 3895-3903. |
[12] | 王永倩, 王平, 程康, 毛晨林, 刘文锋, 尹智成, Ferrante Antonio. 氨气/甲烷贫预混旋转湍流火焰稳定性及NO生成[J]. 化工学报, 2022, 73(9): 4087-4094. |
[13] | 郭金玉, 王哲, 李元. 基于核熵独立成分分析的故障检测方法[J]. 化工学报, 2022, 73(8): 3647-3658. |
[14] | 俞夏琪, 冯格, 赵金燕, 李嘉远, 邓声威, 郑靖楠, 李雯雯, 王亚秋, 沈榄, 刘旭, 徐威威, 王建国, 王式彬, 姚子豪, 毛成立. 基体(TDI-TMP-T313)与氧化剂(AP)相互作用的第一性原理研究[J]. 化工学报, 2022, 73(8): 3511-3517. |
[15] | 周新杰, 王建林, 艾兴聪, 随恩光, 王汝童. 基于IDPC-RVM的多模态间歇过程质量变量在线预测[J]. 化工学报, 2022, 73(7): 3120-3130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||