化工学报 ›› 2019, Vol. 70 ›› Issue (3): 1016-1026.DOI: 10.11949/j.issn.0438-1157.20181062
收稿日期:
2018-09-25
修回日期:
2018-11-29
出版日期:
2019-03-05
发布日期:
2019-03-05
通讯作者:
丁雪兴
作者简介:
<named-content content-type="corresp-name">陈传刚</named-content>(1990—),男,硕士研究生,<email>chenchuangang@163.com</email>|丁雪兴(1964—),男,博士,教授,<email>xuexingding@163.com</email>
基金资助:
Chuangang CHEN1(),Xuexing DING1(
),Junjie LU2,Weizheng ZHANG1,Jinlin CHEN1
Received:
2018-09-25
Revised:
2018-11-29
Online:
2019-03-05
Published:
2019-03-05
Contact:
Xuexing DING
摘要:
摩擦副表-界面的微型结构具有减少摩损、提高润滑性能等作用。在动、静环摩擦端面开设微槽与微孔的复合微造型跨尺度润滑气膜计算域模型,利用独有block映射技术的ICEM软件进行结构化网格划分,并对流场进行数值模拟。以密封的工况条件为出发点,结合微造型结构尺寸,从气膜开启力、泄漏量、润滑气膜摩擦系数及壁面剪切力四个方面展开讨论,结果表明:在介质压力和转速相同时,微孔的覆盖比对气体密封性能影响较大,增幅为5%~8%,并且当覆盖比为50%时气体密封的性能可达到最佳。之后以此为基准改变该模型微孔的密度、深度、直径,通过研究四种参数的变化规律发现微孔的密度和直径对密封性能提升较大,增幅为7%~8%,并且微孔密度为12.5%,深度为10 μm,直径为400 μm时气体密封性能可达到最佳水平。
中图分类号:
陈传刚, 丁雪兴, 陆俊杰, 张伟政, 陈金林. 摩擦副界面微造型序列对气体密封性能的影响[J]. 化工学报, 2019, 70(3): 1016-1026.
Chuangang CHEN, Xuexing DING, Junjie LU, Weizheng ZHANG, Jinlin CHEN. Effect of friction pair interface micro-texture sequence on gas sealing performance[J]. CIESC Journal, 2019, 70(3): 1016-1026.
参数 | 符号 | 数值 |
---|---|---|
外直径 | Φ0/mm | 27 |
内直径 | Φi /mm | 14 |
槽根直径 | Φg/mm | 23.5 |
槽数 | n | 12 |
螺旋角 | β/(°) | 74 |
槽深 | h1/μm | 8 |
气膜厚度 | δ/μm | 4 |
微孔密度 | ρ/% | 10 |
微孔深度 | h2/μm | 4 |
微孔直径 | D/μm | 400 |
表1 密封环端面微造型结构参数
Table 1 Structural parameters of seal ring end face micro-texture
参数 | 符号 | 数值 |
---|---|---|
外直径 | Φ0/mm | 27 |
内直径 | Φi /mm | 14 |
槽根直径 | Φg/mm | 23.5 |
槽数 | n | 12 |
螺旋角 | β/(°) | 74 |
槽深 | h1/μm | 8 |
气膜厚度 | δ/μm | 4 |
微孔密度 | ρ/% | 10 |
微孔深度 | h2/μm | 4 |
微孔直径 | D/μm | 400 |
网格数量 | 最大压力 p/MPa | 最大流速 v/(m·s-1) | 计算时间 t/s |
---|---|---|---|
1178676 | 0.3068270 | 42.37539 | 900 |
2042535 | 0.3139937 | 42.37540 | 2700 |
2862220 | 0.3165161 | 42.37541 | 6600 |
表2 网格无关性验证参数对比
Table 2 Comparison of parameters for grid independence verification
网格数量 | 最大压力 p/MPa | 最大流速 v/(m·s-1) | 计算时间 t/s |
---|---|---|---|
1178676 | 0.3068270 | 42.37539 | 900 |
2042535 | 0.3139937 | 42.37540 | 2700 |
2862220 | 0.3165161 | 42.37541 | 6600 |
1 | 丁雪兴, 张海舟, 苏虹, 等. 螺旋槽干气密封气膜刚度测试与稳定性分析[J]. 振动与冲击, 2013, 32(12): 163-168. |
DingX X, ZhangH Z, SuH, et al. Calculation and testing of micro-scale gas film stiffness in the spiral groove gas seal[J]. Journal of Vibration Measurement & Diagnosis, 2013, 32(12): 163-168. | |
2 | JiangJ B, PengX D, LiJ Y, et al. Leakage and stiffness characteristics of bionic cluster spiral groove dry gas seal[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 21-31. |
3 | YuS S. Analysis of pump dry gas sealing technology and its application[J]. Chemical Engineering Design Communications, 2017, 43(5): 82-84. |
4 | HuangW F, GaoZ, FanW J, et al. An acoustic emission study on the starting and stopping processes of a dry gas seal for pumps[J]. Tribology Letters, 2013, 49(2): 379-384. |
5 | ChenY, PengX D, JiangJ B, et al. Experimental and theoretical studies of the dynamic behavior of a spiral-groove dry gas seal at high-speeds[J]. Tribology International, 2018, 125: 17-26. |
6 | ArghirM, NguyenM H, TononD, et al. Analytic modeling of floating ring annular seals[J]. Journal of Engineering for Gas Turbines & Power, 2011, 134(5): 577-586. |
7 | BalakhL Y, NikiforovA N. The reduction of the vibration level in high-speed rotor systems by means of floating seal rings[J]. Journal of Machinery Manufacture & Reliability, 2013, 42(4): 276-280. |
8 | YurkoV, MartsynkovskyyV. Influence of changing the end floating seal dynamic characteristics on the centrifugal compressor vibration state[J]. Applied Mechanics & Materials, 2013, 630(1): 356-364. |
9 | 邵天敏, 耿哲. 图形化固体薄膜技术及其摩擦学性能的研究进展[J]. 中国表面工程, 2015, 28(2): 1-26. |
ShaoT M, GengZ. Research progress in patterned thin solid film techniques and their tribological performance[J]. China Surface Engineering, 2015, 28(2): 1-26. | |
10 | GabrielR P. Fundamentals of spiral groove noncontacting face seals[J]. Lubrication Engineering, 1994, 50: 215-224. |
11 | MillerB A, WoodruffG W. Numerical formulation for the dynamic analysis of spiral-grooved gas face seals[J]. Journal of Tribology, 2001, 123(2): 395-403. |
12 | RuanB. A semi-analytical solution to the dynamic tracking of non-contacting gas face seals[J]. Journal of Tribology, 2002, 124(1): 196-202. |
13 | BalakhL Y, NikiforovA N. The reduction of the vibration level in high-speed rotor systems by means of floating seal rings[J]. Journal of Machinery Manufacture & Reliability, 2013, 42(4): 276-280. |
14 | 彭旭东, 江锦波, 白少先, 等. 干式气体密封端面型槽仿生设计的相关性[J]. 机械工程学报, 2014, 50(3): 151-157. |
PengX D, JiangJ B, BaiS X, et al. Correlational research of bionics design of dry gas face seal groove[J]. Journal of Mechanical Engineering, 2014, 50(3): 151-157. | |
15 | ChenY, JiangJ B, PengX D. Gas film disturbance characteristics analysis of high-speed and high-pressure dry gas seal[J]. Chinese Journal of Mechanical Engineering, 2016, 29(6): 1-8. |
16 | HolmbergK, MatthewsA. Coatings Tribology[M]. 2nd ed. Amsterdam: Elsevier, 2009. |
17 | 万轶, 熊党生. 激光表面织构化改善摩擦学性能的研究进展[J]. 摩擦学学报, 2006, 26(6): 603-607. |
WanY, XiongD S. Study of laser surface texturing for improving tribological properties[J]. Tribology, 2006, 26(6): 603-607. | |
18 | 王素华, 吴新跃. 基于摩擦学的表面织构技术应用研究进展[J]. 工具技术, 2011, 45(12): 7-11. |
WangS H, WuX Y. Research on applications of surface texturing based on tribology[J]. Tool Engineering, 2011, 45(12): 7-11. | |
19 | PodchernyaevaI A, YurechkoD V, PanashenkoV M. Some trends in the development of wear-resistant functional coatings[J]. Powder Metallurgy & Metal Ceramics, 2013, 52(3/4): 176-188. |
20 | CaiM R, GuoR S, ZhouF, et al. Lubricating a bright future: lubrication contribution to energy saving and low carbon emission[J]. Science China Technological Sciences, 2013, 56(12): 2888-2913. |
21 | HamiltonD B, WalowitJ A, AllenC M. A theory of lubrication by micro-irregularities[J]. Journal of Basic Engineering, 1966, 88(1): 177-185. |
22 | Rohde. A mixed friction model for dynamically loaded contacts with application to piston ring lubrication[C]//Surface Roughness Effects in Hydrodynamic and Mixed Lubrication, Chicago, 1980: 19-50. |
23 | VarenbergM, HalperinG, EtsionI. Different aspects of the role of wear debris in fretting wear[J]. Wear, 2002, 252(11): 902-910. |
24 | 黎红, 黄楠. 生物摩擦学及表面工程的研究现状和进展[J]. 中国表面工程, 2000, 13(1): 6-10. |
LiH, HuangN. Current situation and development of bio-tribology and surface engineering research[J]. China Surface Engineering, 2000, 13(1): 6-10. | |
25 | 于海武, 王晓雷, 孙造, 等. 圆柱形微凹坑表面织构对流体动压润滑性能的影响[J]. 南京航空航天大学学报, 2010, 42(2): 209-213. |
YuH W, WangX L, SunZ, et al. Theoretical analysis on hydrodynamic lubrication of cylinder micro-dimple surface texture[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(2): 209-213. | |
26 | 程香平, 康林萍, 张友亮, 等. 润滑条件下菱形孔织构端面摩擦学特性研究[J]. 摩擦学学报, 2015, 35(6): 658-664. |
ChengX P, KangL P, ZhangY L, et al. Tribological characteristics of end faces with diamond macro-pores textured under lubrication[J]. Tribology, 2015, 35(6): 658-664. | |
27 | WangX Y, ShiL, DaiQ, et al. Multi-objective optimization on dimple shapes for gas face seals[J]. Tribology International, 2018, 123: 216-223. |
28 | 王纯, 刘艳梅, 周涛, 等. 基于ICEM CFD对汽轮机末级三维叶片流场网格划分方法的优化[J]. 汽轮机技术, 2012, 54(5): 324-326. |
WangC, LiuY M, ZhouT, et al. Optimization of mesh generation of steam turbine last stage 3D blade field based on ICEM CFD[J]. Turbine Technology, 2012, 54(5): 324-326. | |
29 | 李存标, 吴介之. 壁流动中的转捩[J]. 力学进展, 2009, 39(4): 480-507. |
LiC B, WuJ Z. The transition in wall flow[J]. Advances in Mechanics, 2009, 39(4): 480-507. | |
30 | 吴介之. 运动物体与涡量场相互作用的不可压理论——涡量场在物面的产生及其耗散[J]. 空气动力学学报, 1986, (2): 44-52. |
WuJ Z. Incompressible theory of interaction between moving bodies and vorticity field: force on moving bodies by vorticity field[J]. Acta Aerodynamica Sinica, 1986, (2): 44-52. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[9] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
[10] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[11] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[12] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[13] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[14] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[15] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 171
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||