化工学报 ›› 2019, Vol. 70 ›› Issue (S1): 86-92.DOI: 10.11949/j.issn.0438-1157.20181268
收稿日期:
2018-10-29
修回日期:
2018-11-15
出版日期:
2019-03-31
发布日期:
2019-03-31
通讯作者:
柳秀丽
作者简介:
<named-content content-type="corresp-name">陈华</named-content>(1972—),女,博士,教授,<email>florahchen@163.com</email>|柳秀丽(1993—),女,硕士,<email>1306594284@qq.com</email>
Hua CHEN(),Xiuli LIU(),Yaxing YANG,Liqiong ZHONG,Lei WANG,Na GAO
Received:
2018-10-29
Revised:
2018-11-15
Online:
2019-03-31
Published:
2019-03-31
Contact:
Xiuli LIU
摘要:
在装有纯石蜡的相变蓄热箱中加入泡沫金属铜,利用Fluent软件,模拟研究石蜡相变蓄热箱在加入泡沫金属铜后,箱内石蜡温度分布的均匀性、稳定性及相变蓄热的变化规律。模拟结果显示,泡沫金属铜的加入,大大提高了石蜡的蓄热性能,缩短了石蜡相变的时间;且加入泡沫铜后,石蜡内部温差明显减小,温度分布更加均匀,并且有效缓解了自然对流造成的顶部过热和底部不熔化现象。数值模拟结果与实验测试数据平均误差15.7%,与实测值吻合较好。
中图分类号:
陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
Hua CHEN, Xiuli LIU, Yaxing YANG, Liqiong ZHONG, Lei WANG, Na GAO. Numerical simulation of foam metal copper/paraffin phase change thermal storage process[J]. CIESC Journal, 2019, 70(S1): 86-92.
1 | 王侃宏, 谷铁柱, 桂林平, 等. 蓄热技术在太阳能地源热泵中的应用及模拟[J]. 河北工程大学学报(自然科学版), 2008,(1): 63-67. |
WangK H, GuT Z, GuiL P, et al. Application and simulation of thermal storage technology in solar-ground source heat pump[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2008,(1): 63-67. | |
2 | 高轩. Y型纵翅片管式相变蓄热过程模拟与优化[D]. 兰州: 兰州理工大学, 2016. |
GaoX. Simulation and optimization of Y-type longitudinal finned tubular phase change heat storage process [D]. Lanzhou: Lanzhou University of Technology, 2016. | |
3 | 柳文洁. 热水蓄热罐在热电联产供热系统中的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
LiuW J. Application of hot water storage tank in co-generation heat supply system [D]. Harbin: Harbin Institute of Technology, 2016. | |
4 | 李东, 张学湛, 丁国伟. 低热值煤气双蓄热技术在薄板坯连铸连轧辊底式加热炉应用的探讨[C]//全国薄板坯连铸连轧生产技术研讨会. 本溪: 中国金属学会, 2017: 134-140. |
LiD, ZhangX Z, DingG W. Discussion on the application of low calorific value gas double-storage technology in the heating furnace of thin slab continuous casting and rolling[C]// Proceedings of National Symposium on Thin Slab Continuous Casting and Rolling Technology. Benxi: China Institute of Metals, 2017: 134-140. | |
5 | 鲍恩财, 曹晏飞, 邹志荣, 等. 节能日光温室蓄热技术研究进展[J]. 农业工程学报, 2018, 34(6): 1-14. |
BaoE C, CaoY F, ZouZ R, et al. Research progress of heat storage technology in energy-saving solar greenhouses [J]. Journal of Agricultural Engineering, 2018, 34(6): 1-14. | |
6 | 杨洋. 乳品厂的余热回收应用及板式换热器传热的研究[D]. 哈尔滨: 哈尔滨商业大学, 2016. |
YangY. Waste heat recovery application of dairy plant and heat transfer of plate heat exchanger [D]. Harbin: Harbin University of Commerce, 2016. | |
7 | 李广华. 基于两种热力循环的内燃机余热回收系统的研究[D]. 天津: 天津大学, 2016. |
LiG H. Research on residual heat recovery system of internal combustion engine based on two kinds of thermodynamic cycles [D]. Tianjin: Tianjin University, 2016. | |
8 | 冯红翠. 基于超结构MINL P模型及遗传算法的烧结余热发电系统优化设计[D]. 杭州: 浙江大学, 2015. |
FengH C. Optimization design of sintering waste heat power generation system based on superstructure MINLP model and genetic algorithm[D]. Hangzhou: Zhejiang University, 2015. | |
9 | 徐治国, 赵长颖, 纪育楠, 等. 中低温相变蓄热的研究进展[J]. 储能科学与技术, 2014, 3(3): 179-190. |
XuZ G, ZhaoC Y, JiY N, et al. Research progress of medium and low temperature phase change heat storage [J]. Energy Storage Science and Technology, 2014, 3(3): 179-190. | |
10 | 李文昕.绿色精量消费模式下的城市规划与设计策略研究[D]. 长沙: 湖南大学, 2010. |
LiW X. Study on urban planning and design strategy under green precision consumption mode[D]. Changsha: Hunan University, 2010. | |
11 | 史德福. 三种不同冷凝热回收方式下空调系统性能研究[D]. 天津: 天津商业大学, 2013. |
ShiD F. Study on the performance of air conditioning system under three different condensing heat recovery modes [D]. Tianjin: Tianjin University of Commerce, 2013. | |
12 | 刘芬, 祝仰勇. 热泵精馏技术在煤焦化工艺中的应用分析[J]. 山东冶金, 2012, 34(2): 57-58. |
LiuF, ZhuY Y. Application analysis of heat pump distillation technology in coal coking process[J]. Shandong Metallurgy, 2012, 34(2): 57-58. | |
13 | 张川.采用小温差换热末端的空气源热泵空调系统性能研究[D]. 上海: 上海交通大学, 2015. |
ZhangC. Study on the performance of air source heat pump air conditioning system with small temperature difference heat exchange end [D]. Shanghai: Shanghai Jiao Tong University, 2015. | |
14 | 李俊. 基于PostgreSQL集群的能源数据采集存储系统的研究与实现[D]. 广州: 华南理工大学, 2013. |
LiJ. Research and implementation of energy data acquisition and storage system based on PostgreSQL cluster[D]. Guangzhou: South China University of Technology, 2013. | |
15 | 胡振东, 王腾跃, 王惠文. 提高热水器能源利用率——一种基于逆流热交换的热水器余热回收装置研究[J]. 环境与发展, 2017, 29(6): 108-109. |
HuZ D, WangT Y, WangH W. Improving energy efficiency of water heater—a study on waste heat recovery device of water heater based on counter current heat exchange[J]. Environment and Development, 2017, 29(6): 108-109. | |
16 | 王倩. 我国能源消费现状及其优化策略[J]. 商业经济研究, 2018,(17): 40-42. |
WangQ. The status quo of energy consumption in china and its optimization strategy[J]. Commercial Economic Research, 2018,(17): 40-42. | |
17 | 马俊. 公共建筑可再生能源利用率计算方法研究[J]. 绿色建筑, 2018, 10(2):29-31. |
MaJ. Study on calculation method of renewable energy utilization rate of public buildings[J]. Green Building, 2018, 10(2): 29-31. | |
18 | 刘佳佳. 相变蓄热器性能与强化传热研究[D].北京:华北电力大学, 2017. |
LiuJ J. Research on performance and enhanced heat transfer of phase change accumulator [D]. Beijing:North China Electric Power University, 2017. | |
19 | 梁之西, 王海月, 祁祥松, 等. 基于Fluent软件的管道的流场数值模拟[J]. 南方农机, 2017, 48(16):111. |
LiangZ X, WangH Y, QiX S, et al. Numerical simulation of flow field of pipeline based on Fluent software[J]. China Southern Agricultural Machinery, 2017, 48(16): 111. | |
20 | 雷娅蓉. 基于Fluent软件在变频多联机设计中的应用分析[J]. 科技创新与应用, 2018, 1(24): 151-152. |
LeiY R. Application analysis of frequency-based line design based on Fluent software[J]. Science & Technology Innovation and Application, 2018, 1(24): 151-152. | |
21 | 刘宇飞, 章学来, 华维三, 等. 相变蓄热式集热器蓄放热数值与实验分析[J]. 太阳能学报, 2017, 38(9): 2486-2492. |
LiuY F, ZhangX L, HuaW S, et al. Numerical and experimental analysis of heat storage and release of phase change regenerative collectors[J]. Acta Energiae Solaris Sinica, 2017, 38(9): 2486-2492. | |
22 | 于萍, 郭华锋. FLUENT软件在工程流体力学教学中的应用[J]. 教育教学论坛, 2018, 18(16): 271-272. |
YuP, GuoH F. Application of FLUENT software in engineering fluid mechanics teaching[J]. Education and Teaching Forum, 2018, 18(16): 271-272. | |
23 | 康艳兵, 张寅平, 江亿, 等. 相变蓄热球体堆积床传热模型及热性能分析[J]. 清华大学学报(自然科学版), 2000, 40(2): 106-109. |
KangY B, ZhangY P, JiangY, et al. Heat transfer model and thermal performance analysis of phase change heat storage sphere packed bed[J]. Journal of Tsinghua University (Science and Technology), 2000, 40(2): 106-109. | |
24 | 崔海亭, 袁修干, 侯欣宾. 高温固液相变蓄热容器的研究与发展[J]. 太阳能学报, 2002, 23(3): 383-386. |
CuiH T, YuanX G, HouX B. Research and development of high temperature solid-liquid phase change heat storage containers[J]. Journal of Solar Energy, 2002, 23(3): 383-386. | |
25 | 邢玉明, 袁修干, 王长和. 空间站高温固液相变蓄热容器的实验研究[J]. 航空动力学报, 2001, 3(161): 74-79. |
XingY M, YuanX G, WangC H. Experimental study on high temperature solid-liquid phase change heat storage vessel in space station[J]. Journal of Aerospace Power, 2001, 3(161): 74-79. | |
26 | PyX, OlivesR, MauranS. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material[J]. International Journal of Heat & Mass Transfer, 2001, 44(14): 2727-2737. |
27 | 王俊. 石蜡熔化蓄热的实验和理论研究[D]. 西安: 西安交通大学, 2002. |
WangJ. Experimental and theoretical study on the melting and heat storage of paraffin[D]. Xi an: Xi an Jiaotong University, 2002. | |
28 | 程文龙, 韦文静. 高孔隙率泡沫金属相变材料储能、传热特性[J]. 太阳能学报, 2007, 28(7): 739-744. |
ChengW L, WeiW J. Energy storage and heat transfer characteristics of high porosity foam metal phase change materials [J]. Journal of Solar Energy, 2007, 28(7): 739-744. | |
29 | 夏莉, 张鹏, 周圆, 等. 石蜡与石蜡/膨胀石墨复合材料充/放热性能研究[J]. 太阳能学报, 2010, 31(5): 610-614. |
XiaL, ZhangP, ZhouY, et al. Study on charge/discharge performance of paraffin and paraffin/expanded graphite composites [J]. Journal of Solar Energy, 2010, 31(5): 610-614. | |
30 | 朱家玲, 李慧, 张伟. 螺旋管式相变蓄热过程的数值模拟与系统优化[J]. 天津大学学报(自然科学与工程技术版), 2012,(10): 875-880. |
ZhuJ L, LiH, ZhangW. Numerical simulation and system optimization of spiral tube phase change thermal storage process[J]. Journal of Tianjin University (Natural Science and Engineering Technology), 2012,(10): 875-880. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[8] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[9] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[10] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[11] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[12] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[13] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[14] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[15] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||