化工学报 ›› 2019, Vol. 70 ›› Issue (S1): 61-68.DOI: 10.11949/j.issn.0438-1157.20181401
收稿日期:
2018-11-22
修回日期:
2019-01-21
出版日期:
2019-03-31
发布日期:
2019-03-31
通讯作者:
董秋辰
作者简介:
<named-content content-type="corresp-name">张光华</named-content>(1962—),男,博士,教授,<email>zhanggh@sust.edu.cn</email>|董秋辰(1995—),男,硕士研究生,<email>1069813711@qq.com</email>
基金资助:
Guanghua ZHANG(),Qiuchen DONG(),Jing LIU
Received:
2018-11-22
Revised:
2019-01-21
Online:
2019-03-31
Published:
2019-03-31
Contact:
Qiuchen DONG
摘要:
采用紫外分光光度法测定了2种联结基不同的阳离子双子季铵盐缓蚀剂(bi-PDTBP和PDTBP)在油水两相中的分配系数,通过分配系数及有关理论,计算出2种阳离子双子季铵盐缓蚀剂在分配时的热力学参数,并系统考察了温度、油水比例、盐浓度、缓蚀剂浓度和时间对缓蚀剂在油水介质中迁移的影响;最后通过失重法研究了2种缓蚀剂在1 mol/L盐酸中对Q235钢的缓蚀性能。结果表明:温度和缓蚀剂浓度可促进缓蚀剂在油水介质中的分配,而盐浓度和油水比例会阻碍缓蚀剂在油水介质中的分配;另外,随着2种缓蚀剂浓度的增加,缓蚀效率逐渐提高,且bi-PDTBP在高温下的缓蚀性能优于PDTBP。
中图分类号:
张光华, 董秋辰, 刘晶. 多苯环双子季铵盐在油水两相中的传质性能[J]. 化工学报, 2019, 70(S1): 61-68.
Guanghua ZHANG, Qiuchen DONG, Jing LIU. Two-phase mass transfer of multi-benzene gemini quaternary ammonium salt in oil-water[J]. CIESC Journal, 2019, 70(S1): 61-68.
Temperature/℃ | bi-PDTBP | PDTBP | ||
---|---|---|---|---|
Absorbancy | Absorbancy | |||
25 | 0.736 | 33.369 | 0.457 | 34.958 |
30 | 0.754 | 34.705 | 0.463 | 36.181 |
35 | 0.768 | 35.767 | 0.468 | 37.108 |
40 | 0.776 | 36.424 | 0.471 | 37.728 |
45 | 0.791 | 37.528 | 0.474 | 38.316 |
50 | 0.795 | 37.876 | 0.476 | 38.761 |
55 | 0.797 | 38.03 | 0.477 | 38.992 |
60 | 0.78 | 38.229 | 0.478 | 39.232 |
表1 不同温度下缓蚀剂在油水两相中的吸光度和浓度
Table 1 Absorbance and concentration of two inhibitors in oil-water two phases at different temperatures
Temperature/℃ | bi-PDTBP | PDTBP | ||
---|---|---|---|---|
Absorbancy | Absorbancy | |||
25 | 0.736 | 33.369 | 0.457 | 34.958 |
30 | 0.754 | 34.705 | 0.463 | 36.181 |
35 | 0.768 | 35.767 | 0.468 | 37.108 |
40 | 0.776 | 36.424 | 0.471 | 37.728 |
45 | 0.791 | 37.528 | 0.474 | 38.316 |
50 | 0.795 | 37.876 | 0.476 | 38.761 |
55 | 0.797 | 38.03 | 0.477 | 38.992 |
60 | 0.78 | 38.229 | 0.478 | 39.232 |
Temperature/℃ | bi-PDTBP | PDTBP | ||
---|---|---|---|---|
(kJ/mol) | (kJ/mol) | |||
25 | 1.253 | ?0.558 | 1.396 | ?0.826 |
30 | 1.372 | ?0.796 | 1.519 | ?1.053 |
35 | 1.476 | ?0.997 | 1.621 | ?1.237 |
40 | 1.545 | ?1.132 | 1.694 | ?1.371 |
45 | 1.67 | ?1.259 | 1.767 | ?1.505 |
50 | 1.712 | ?1.444 | 1.825 | ?1.615 |
55 | 1.731 | ?1.496 | 1.856 | ?1.686 |
60 | 1.756 | ?1.559 | 1.889 | ?1.761 |
表2 不同温度下缓蚀剂在油水两相中的Kw/o和?Go→w
Table 2 Kw/o and ?Go→w of two inhibitors in oil-water two phases at different temperatures
Temperature/℃ | bi-PDTBP | PDTBP | ||
---|---|---|---|---|
(kJ/mol) | (kJ/mol) | |||
25 | 1.253 | ?0.558 | 1.396 | ?0.826 |
30 | 1.372 | ?0.796 | 1.519 | ?1.053 |
35 | 1.476 | ?0.997 | 1.621 | ?1.237 |
40 | 1.545 | ?1.132 | 1.694 | ?1.371 |
45 | 1.67 | ?1.259 | 1.767 | ?1.505 |
50 | 1.712 | ?1.444 | 1.825 | ?1.615 |
55 | 1.731 | ?1.496 | 1.856 | ?1.686 |
60 | 1.756 | ?1.559 | 1.889 | ?1.761 |
Salinity/% | bi-PDTBP | PDTBP | ||
---|---|---|---|---|
Absorbancy | Absorbancy | |||
0 | 0.754 | 34.705 | 0.463 | 36.181 |
0.2 | 0.556 | 19.487 | 0.382 | 20.291 |
0.4 | 0.456 | 11.768 | 0.342 | 12.494 |
0.6 | 0.384 | 6.285 | 0.316 | 7.322 |
0.8 | 0.365 | 4.802 | 0.306 | 5.405 |
1 | 0.344 | 3.182 | 0.299 | 4.082 |
表3 不同盐浓度下缓蚀剂的吸光度与浓度
Table 3 Absorbance and concentration of two inhibitors at different salt contents
Salinity/% | bi-PDTBP | PDTBP | ||
---|---|---|---|---|
Absorbancy | Absorbancy | |||
0 | 0.754 | 34.705 | 0.463 | 36.181 |
0.2 | 0.556 | 19.487 | 0.382 | 20.291 |
0.4 | 0.456 | 11.768 | 0.342 | 12.494 |
0.6 | 0.384 | 6.285 | 0.316 | 7.322 |
0.8 | 0.365 | 4.802 | 0.306 | 5.405 |
1 | 0.344 | 3.182 | 0.299 | 4.082 |
1 | ZhangS, TaoZ, LiW, et al. The effect of some triazole derivatives as inhibitors for the corrosion of mild steel in 1 M hydrochloric acid[J]. Applied Surface Science, 2009, 255(15): 6757-6763. |
2 | ZouC, QinY, YanX, et al. Study on acidizing effect of cationic β-cyclodextrin inclusion complex with sandstone for enhancing oil recovery[J]. Industrial & Engineering Chemistry Research, 2014, 53(33): 12901-12910. |
3 | 郭睿, 李云鹏, 土瑞香, 等. 3-丁基-5,5-二甲基海因咪唑季铵盐对HCl溶液中Q235钢的缓蚀性能[J]. 高等学校化学学报, 2018, 39(5): 1018-1025. |
GuoR, LiY P, TuR X, et al. Corrosion inhibition of 3-butyl-5,5-dimethyhydantoin imidazole ammonium salt on Q235 steel in HCl solution[J]. Chemical Journal of Chinese Universities, 2018, 39(5): 1018-1025. | |
4 | BarmatovE, HughesT, NaglM. Efficiency of film-forming corrosion inhibitors in strong hydrochloric acid under laminar and turbulent flow conditions[J]. Corrosion Science, 2015, 92: 85-94. |
5 | KumarS, SharmaD, YadavP, et al. Experimental and quantum chemical studies on corrosion inhibition effect of synthesized organic compounds on N80 steel in hydrochloric acid[J]. Industrial & Engineering Chemistry Research, 2013, 52(39): 14019-14029. |
6 | LiX, DengS, FuH. Inhibition of the corrosion of steel in HCl, H2SO4 solutions by bamboo leaf extract[J]. Corrosion Science, 2012, 62: 163-175. |
7 | DonnellyB, DownieT C, GrzeskowiakR, et al. The effect of electronic delocalization in organic groups R, in substituted thiocarbamoyl R—CS—NH2, and related compounds on inhibition efficiency[J]. Corrosion Science, 1978, 18(2): 109-116. |
8 | OstovariA, HoseiniehS M, PeikariM, et al. Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: a comparative study of the inhibition by henna and its constituents (lawsone, gallic acid, α-D-glucose and tannic acid)[J]. Corrosion Science, 2009, 51(9): 1935-1949. |
9 | 林海潮. 缓蚀剂研究的进展[J]. 腐蚀科学与防护技术, 1997, 9(4): 52-57. |
LinH C. Process in research of inhibitors[J]. Corrosion Science and Protection Technology, 1997, 9(4): 52-57. | |
10 | FinšgarM, JacksonJ. Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review[J]. Corrosion Science, 2014, 86(3): 17-41. |
11 | AbdallahM, MeghedH E, SobhiM. Inhibiting effect of Ni2+ cation + 3-methyl pyrazolone as a corrosion inhibitor for carbon steel in sulfuric acid solution[J]. Materials Chemistry & Physics, 2009, 118(1): 111-117. |
12 | AbdallahM, HelalE A, FoudaA S. Aminopyrimidine derivatives as inhibitors for corrosion of 1018 carbon steel in nitric acid solution[J]. Corrosion Science, 2006, 48(7): 1639-1654. |
13 | WangL. Inhibition of mild steel corrosion in phosphoric acid solution by triazole derivatives[J]. Corrosion Science, 2006, 48(3): 608-616. |
14 | QiuL G, XieA J, ShenY H. Understanding the adsorption of cationic gemini surfactants on steel surface in hydrochloric acid[J]. Materials Chemistry and Physics, 2004, 87(2/3): 237-240. |
15 | OguzieE E. Corrosion inhibition of aluminium in acidic and alkaline media by sansevieria trifasciata extract[J]. Corrosion Science, 2007, 49(3): 1527-1539. |
16 | AsefiD, AramiM, MahmoodiN M. Electrochemical effect of cationic gemini surfactant and halide salts on corrosion inhibition of low carbon steel in acid medium[J]. Corrosion Science, 2010, 52(3): 794-800. |
17 | AchouriE L, InfanteM R, IzquierdoF, et al. Synthesis of some cationic gemini surfactants and their inhibitive effect on iron corrosion in hydrochloric acid medium[J]. Corrosion Science, 2001, 43(1): 19-35. |
18 | 陈权生, 聂小斌, 韩炜, 等. ASP驱中石油磺酸盐在油水两相中的分配系数研究[J]. 油气地质与采收率, 1997, (1): 11-15. |
ChenQ S, NieX B, HanW, et al. Determination of the partition coefficient of petroleum sulfonate in the ASP flooding of karamay oil field[J]. Petroleum Geology and Recovery Efficiency, 1997, (1): 11-15. | |
19 | 刘元清, 贾丽, 李志远, 等. 油田污水中咪唑啉缓蚀剂浓度检测技术研究[J]. 石油化工腐蚀与防护, 2002, 19(4): 57-59. |
LiuY Q, JiaL, LiZ Y, et al. Study on technique for testing imidazoline inhibitor concentration in oil field waste water[J]. Petrochemical Corrosion and Protection, 2002, 19(4): 57-59. | |
20 | 胡志华, 刘磊, 周芳德, 等. 油水两相乳化液流动特性的实验研究[J]. 上海交通大学学报, 2005, 39(2): 146-148. |
HuZ H, LiuL, ZhouF D, et al. An experimental study on the flow characteristics for oil-water emulsions[J]. Journal of Shanghai Jiaotong University, 2005, 39(2): 146-148. | |
21 | 张光华, 王腾飞, 董惟昕. 硫脲基烷基咪唑啉季铵盐缓蚀剂在油水两相中的传质性能[J]. 化工进展, 2010, 29(12): 2254-2259. |
ZhangG H, WangT F, DongW X. Two phase mass transfer of imidazoline quaternary ammonium salt in oil-water[J]. Chemical Industry and Engineering Progress, 2010, 29(12): 2254-2259. | |
22 | 焦其正, 付朝阳, 王丽荣, 等. 油气田用咪唑啉类缓蚀剂浓度的检测方法[J]. 天然气工业, 2006, 26(6): 25-26+159-161. |
JiaoQ Z, FuC Y, WangL R, et al. Concentration measurement of imidazoline inhibitor applied in oil and gas field[J]. Natural Gas Industry, 2006, 26(6): 25-26+159-161. | |
23 | Olivares-XometlO, LikhanovaN V, Domínguez-AguilarM A, et al. Synthesis and corrosion inhibition of α-amino acids alkylamides for mild steel in acidic environment[J]. Materials Chemistry & Physics, 2008, 110(2/3): 344-351. |
24 | QuartaroneG, BattilanaM, BonaldoL, et al. Investigation of the inhibition effect of indole-3-carboxylic acid on the copper corrosion in 0.5 M H2SO4[J]. Corrosion Science, 2008, 50(12): 3467-3474. |
25 | MuG, LiX, QuQ, et al. Molybdate and tungstate as corrosion inhibitors for cold rolling steel in hydrochloric acid solution[J]. Cleaning World, 2006, 48(2): 445-459. |
26 | 郝汉, 马超, 冯建国, 等. 聚羧酸盐分散剂在吡虫啉颗粒表面的吸附特性[J]. 化工学报, 2013, 64(8): 2898-2906. |
HaoH, MaC, FengJ G, et al. Adsorption of polycarboxylate dispersant onto imidacloprid particle surfaces[J]. CIESC Journal, 2013, 64(8): 2898-2906. | |
27 | AbdallahM. Rhodanine azosulpha drugs as corrosion inhibitors for corrosion of 304 stainless steel in hydrochloric acid solution[J]. Corrosion Science, 2002, 44(4): 717-728. |
28 | 李国轲, 高肖汉, 王兴旺, 等. 盐析效应对水中油含量测定影响的研究[J]. 工业水处理, 2016, 36(2): 90-93. |
LiG K, GaoX H, WangX W, et al. Study on the influences of the salting out effect on the determination of oil content in water[J]. Industrial Water Treatment, 2016, 36(2): 90-93. | |
29 | ZhaoT, MuG. The adsorption and corrosion inhibition of anion surfactants on aluminium surface in hydrochloric acid[J]. Corrosion Science, 1999, 41(10): 1937-1944. |
30 | 郭睿, 马兰, 王映月, 等. 双(1-氯-N-羟乙基吗啉-2-羟丙基)正十八烷胺的缓蚀性能[J]. 化工进展, 2018, 37(3): 1145-1151. |
GuoR, MaL, WangY Y, et al. Corrosin inhibition performrnce of bis(1-chloro-N-hydroxyethyl morpholinium-2-hydroxypropyl) n-octadecylamine[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1145-1151. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[3] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[6] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[7] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[8] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[9] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[10] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[11] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[12] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[13] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[14] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[15] | 尹驰, 张正国, 凌子夜, 方晓明. 含石蜡@二氧化硅纳米胶囊和碳纤维的相变热界面材料及其散热性能[J]. 化工学报, 2023, 74(4): 1795-1804. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||