1 |
BehrendsR, FuchsK, KaatzeU, et al. Dielectric properties of glycerol/water mixtures at temperatures between 10 and 50 degrees C[J]. Journal of Chemical Physics, 2006, 124(14): 1417.
|
2 |
SatoT, ChibaA, NozakiR. Hydrophobic hydration and molecular association in methanol–water mixtures studied by microwave dielectric analysis[J]. Journal of Chemical Physics, 2000, 112(6): 2924-2932.
|
3 |
HiejimaY, YaoM. Dielectric relaxation of lower alcohols in the whole fluid phase[J]. Journal of Chemical Physics, 2003, 119(15): 7931-7942.
|
4 |
SchwerdtfegerS, KöhlerF, PottelR, et al. Dielectric relaxation of hydrogen bonded liquids: mixtures of monohydric alcohols with n-alkanes[J]. Journal of Chemical Physics, 2001, 115(9): 4186-4194.
|
5 |
董秀丽. 小分子和水分子间氢键的理论研究[D]. 曲阜: 曲阜师范大学, 2005.
|
|
DongX L. Theoretical study of hydrogen bonds between small molecules and water molecules[D]. Qufu: Qufu Normal University, 2005.
|
6 |
NewtonfriendJ, HargreavesW X C. Viscosity and the hydrogen bond[J]. Philosophical Magazine, 1945, 36(262): 731-756.
|
7 |
蒋华义. 微波对高凝油作用规律的实验研究[J]. 油气田地面工程, 2004, 23(3): 14-14.
|
|
JiangH Y. Experimental study on the effect of microwave on high coagulation oil[J]. Oil-Gasfield Surface Engineering, 2004, 23(3): 14-14.
|
8 |
张兆镗. 微波加热技术基础[M]. 北京: 电子工业出版社, 1988: 12.
|
|
ZhangZ T. Microwave Heating Technology Foundation[M]. Beijing: Electronic Industry Press, 1988: 12.
|
9 |
王陆瑶, 孟东, 李璐. “热效应”或“非热效应”——微波加热反应机理探讨[J]. 化学通报, 2013, 76(8): 698-703.
|
|
WangL Y, MengD, LiL. Thermal or nonthermal microwave effects—the mechanism of microwave heating[J]. Chemistry, 2013, 76(8): 698-703.
|
10 |
蒋华义. 微波对高粘高凝原油作用规律研究[D]. 成都: 西南石油学院, 2004.
|
|
JiangH Y. Study on the influence of microwave on high viscosity and high coagulation crude oil[D]. Chengdu: Southwest Petroleum University, 2004.
|
11 |
HydeA, HoriguchiM, MinamishimaN, et al. Effects of microwave irradiation on the decane-water interface in the presence of Triton X-100[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2017, 524: 178-184.
|
12 |
邓波, 庞小峰. 静磁场作用下的水的性质改变[J]. 电子科技大学学报, 2008, 37(6): 959-962.
|
|
DengB, PangX F. Static magnetic field influence on properties of water[J]. Journal of University of Electronic Science and Technology of China, 2008, 37(6): 959-962.
|
13 |
ToledoE J L, RamalhoT C, MagriotisZ M. Influence of magnetic field on physical–chemical properties of the liquid water: insights from experimental and theoretical models[J]. Journal of Molecular Structure, 2008, 888(1/2/3): 409-415.
|
14 |
RazmkhahM , MoosaviF , MosavianM T H , et al. Does electric or magnetic field affect reverse osmosis desalination?[J]. Desalination, 2018, 432: 55-63.
|
15 |
PadróJ A, SaizL, GuàrdiaE. Hydrogen bonding in liquid alcohols: a computer simulation study[J]. Journal of Molecular Structure, 1997, 416(1/2/3): 243-248.
|
16 |
AntipovaM L, PetrenkoV E. Hydrogen bond lifetime for water in classic and quantum molecular dynamics[J]. Russian Journal of Physical Chemistry A, 2013, 87(7): 1170-1174.
|
17 |
GuàrdiaE, MartíJ, PadróJ A, et al. Dynamics in hydrogen bonded liquids: water and alcohols[J]. Journal of Molecular Liquids, 2002, 96: 3-17.
|
18 |
ZhaoY L, DongK, LiuX M, et al. Structure of ionic liquids under external electric field: a molecular dynamics simulation[J]. Molecular Simulation, 2012, 38(3): 172-178.
|
19 |
RootL J, BerneB J. Effect of pressure on hydrogen bonding in glycerol: a molecular dynamics investigation[J]. Journal of Chemical Physics, 1997, 107(11): 4350-4357.
|
20 |
EgorovA V, LyubartsevA P, LaaksonenA. Molecular dynamics simulation study of glycerol-water liquid mixtures[J]. Journal of Physical Chemistry B, 2011, 115(49): 14572-14581.
|
21 |
DongH J, YangJ H, MuS J. The effect of an external electric field on the structure of liquid water using molecular dynamics simulations[J]. Chemical Physics, 1999, 244(2/3): 331-337.
|
22 |
SunW, ChenZ, HuangS Y. Molecular dynamics simulation of liquid methanol under the influence of an external electric field[J]. Fluid Phase Equilibria, 2005, 238(1): 20-25.
|
23 |
ChenC, LiW Z, SongY C, et al. Hydrogen bonding analysis of glycerol aqueous solutions: a molecular dynamics simulation study[J]. Journal of Molecular Liquids, 2009, 146(1): 23-28.
|
24 |
DashnauJ L, NucciN V, SharpK A, et al. Hydrogen bonding and the cryoprotective properties of glycerol/water mixtures.[J]. Journal of Physical Chemistry B, 2006, 110(27): 13670-13677.
|
25 |
洪品杰, 戴树珊, 林春雷, 等. 醇-水, 醇-酸混溶介质的微波衰减特性[J]. 化学研究与应用, 1993, 5(3): 36-40.
|
|
HongP J, DaiS S, LinC L, et al. Microwave attenuation characteristics of alcohol-water, alcohol-acid miscible media[J]. Chemical Research and Application, 1993, 5(3): 36-40.
|
26 |
SaizL, PadroJ A, GuardiaE. Dynamics and hydrogen bonding in liquid ethanol[J]. Molecular Physics, 1999, 97(7): 897-905.
|
27 |
JahnD A, AkinkunmiF O, GiovambattistaN. Effects of temperature on the properties of glycerol: a computer simulation study of five different force fields[J]. Journal of Physical Chemistry B, 2014, 118(38): 11284-11294.
|
28 |
HessB, BekkerH, BerendsenH J C, et al. LINCS: a linear constraint solver for molecular simulations[J]. Journal of Computational Chemistry, 1997, 18(12): 1463–1472.
|
29 |
NagA, ChakrabortyD, ChandraA. Effects of ion concentration on the hydrogen bonded structure of water in the vicinity of ions in aqueous NaCl solutions[J]. Journal of Chemical Sciences, 2008, 120(1): 71-77.
|
30 |
EnglishN J, MacelroyJ M D. Hydrogen bonding and molecular mobility in liquid water in external electromagnetic fields[J]. Journal of Chemical Physics, 2003, 119(22): 11806-11813.
|
31 |
陈正隆, 徐为人, 汤立达. 分子模拟的理论与实践[M]. 北京: 化学工业出版社, 2007: 110.
|
|
ChenZ L, XuW R, TangL D. Theory and Practice of Molecular Simulation[M]. Beijing: Chemical Industry Press, 2007: 110.
|