化工学报 ›› 2019, Vol. 70 ›› Issue (S1): 1-14.DOI: 10.11949/j.issn.0438-1157.20181484
曾昭文1(),郑成1,2(),毛桃嫣1,魏渊1,肖润辉1,彭思玉1
收稿日期:
2018-12-17
修回日期:
2019-02-22
出版日期:
2019-03-31
发布日期:
2019-03-31
通讯作者:
郑成
作者简介:
<named-content content-type="corresp-name">曾昭文</named-content>(1994—),男,硕士研究生,<email>zhaowen_z94@163.com</email>|郑成(1955—),男,博士,教授,<email>zhengcheng5512@163.com</email>
基金资助:
Zhaowen ZENG1(),Cheng ZHENG1,2(),Taoyan MAO1,Yuan WEI1,Runhui XIAO1,Siyu PENG1
Received:
2018-12-17
Revised:
2019-02-22
Online:
2019-03-31
Published:
2019-03-31
Contact:
Cheng ZHENG
摘要:
与传统加热过程比较,微波辅助有机合成的优势在于加快反应速率、提高产率和改变化学选择性。研究者们将这种常规加热无法重现的现象称为非热效应,但关于非热效应的存在性一直争论不休,至今微波促进合成反应的作用机理尚不清楚。总结了微波技术在有机合成和化工分离过程的应用进展,综述了近年来国内外对微波热效应与非热效应的研究进展,阐述了微波效应的实例分析以及理论观点,同时,对微波在工业化过程的发展进行了分析与展望。
中图分类号:
曾昭文, 郑成, 毛桃嫣, 魏渊, 肖润辉, 彭思玉. 微波在化工过程中的研究及应用进展[J]. 化工学报, 2019, 70(S1): 1-14.
Zhaowen ZENG, Cheng ZHENG, Taoyan MAO, Yuan WEI, Runhui XIAO, Siyu PENG. Progress in research and application of microwave in chemical process[J]. CIESC Journal, 2019, 70(S1): 1-14.
图4 nSiO2(a), MW–nSiO2(b), PANF, PANMW-Thio, and PANCV-Thio fibers(c)的SEM图
Fig.4 SEM images of nSiO2(a), MW-nSiO2(b), PANF, PANMW-Thio, and PANCV-Thio fibers(c)
图6 在微波系统中溶质选择性吸收的模型图解说明(a) [113];含Pd/AC催化剂的无甲基环己烷反应器的微波加热(MWH)和常规加热(CH)的温度分布(b) [112]
Fig.6 Graphical illustration of model for solute selective absorption in microwave system (a) [113],temperature distribution for reactor containing Pd/AC catalysts without methylcyclohexane: under microwave heating (MWH) and conventional heating (CH) (b) [112]
图7 微波驱动激发RC分子链内羟基相互作用变化(a)[129];微波辐射对光降解反应的作用示意图(b)[130];DMSO-乙醇混合物中氢键之间的作用示意图(c)[131];微波辐射降解NDMA的过程和Arrhenius图(d)[121]
Fig.7 Interaction change between hydroxyl groups within molecular chain of RC excited by microwave driving(a) [129]; schematic diagram of effect of microwave radiation on photodegradation reaction (b) [130]; schematic diagram of interaction between hydrogen bonds in DMSO-ethanol mixture(c) [131]; process of degrading NDMA by microwave radiation and Arrhenius plot(d) [121]
1 | AoW, FuJ, MaoX, et al. Microwave assisted preparation of activated carbon from biomass: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 958-979. |
2 | 魏渊, 郑成, 毛桃嫣, 等. 山嵛酸双酯基有机硅季铵盐的微波合成工艺及性能[J]. 化工进展, 2018, 37(8): 3169-3178. |
WeiY, ZhengC, MaoT Y, et al. Microwave synthesis process and properties of behenic acid diester-based silicone quaternary ammonium salt[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3169-3178. | |
3 | 凌慧, 郑成, 毛桃嫣, 等. 响应面法优化微波辅助合成中碳链甘油三酯工艺 [J]. 化工学报, 2016, 67(S2): 231-244. |
LingH, ZhengC, MaoT Y, et al. Optimization of microwave-assisted synthesis of medium-chain triacylglycerols using response surface methodology[J]. CIESC Journal, 2016, 67(S2): 231-244. | |
4 | HillmanF, ZimmermanJ M, PaekS M, et al. Rapid microwave-assisted synthesis of hybrid zeolitic-imidazolate frameworks with mixed metals and mixed linkers[J]. Journal of Materials Chemistry A, 2017, 5(13): 6090-6099. |
5 | XinZ C, LiL, ZhangX L, et al. Microwave-assisted hydrothermal synthesis of chrysanthemum-like Ag/ZnO prismatic nanorods and their photocatalytic properties with multiple modes for dye degradation and hydrogen production[J]. RSC Adv., 2018, 8(11): 6027-6038. |
6 | MakhadoE, PandeyS, RamontjaJ. Microwave assisted synthesis of xanthan gum-cl-poly (acrylic acid) based-reduced graphene oxide hydrogel composite for adsorption of methylene blue and methyl violet from aqueous solution[J]. Int. J. Biol. Macromol., 2018, 119: 255-269. |
7 | LiuS Y, MeiL F, LiangX L, et al. Anchoring Fe3O4 nanoparticles on carbon nanotubes for microwave-induced catalytic degradation of antibiotics[J]. ACS Appl. Mater. Interfaces, 2018, 10(35): 29467-29475. |
8 | ChenW M, ZhangA P, GuZ P, et al. Enhanced degradation of refractory organics in concentrated landfill leachate by Fe0/H2O2 coupled with microwave irradiation[J]. Chem. Eng. J., 2018, 354: 680-691. |
9 | GedyeR, SmithF, WestawayK, et al. The use of microwave-ovens for rapid organic-synthesis[J]. Tetrahedron Lett., 1986, 27(3): 279-282. |
10 | De BruynM, BudarinV L, SturmG S J, et al. Subtle microwave-induced overheating effects in an industrial demethylation reaction and their direct use in the development of an innovative microwave reactor[J]. J. Am. Chem. Soc., 2017, 139(15): 5431-5436. |
11 | 徐运欢, 郑成, 林璟, 等. 全氟烃基季铵盐的微波合成[J]. 精细化工, 2014, 31(3): 326-331. |
XuY H, ZhengC, LinJ, et al. Microwave synthesis of a perfluoroalkyl-containing quaternary ammonium salt[J]. Fine Chemicals, 2014, 31(3): 326-331. | |
12 | 丁寒卫, 薛永强, 崔子祥, 等. 一种多头基有机硅季铵盐的合成及其性能[J]. 化工进展, 2014, 33(2): 479-482. |
DingH W, XueY Q, CuiZ X, et al. Synthesis and properties of a kind of organosilicon quaternary ammonium salt with multi-heads in its molecular structure[J]. Chemical Industry and Engineering Progress, 2014, 33(2): 479-482. | |
13 | DangeP N, RathodV K. Equilibrium and thermodynamic parameters for heterogeneous esterification of butyric acid with methanol under microwave irradiation[J]. Resource-Efficient Technologies, 2017, 3(1): 64-70. |
14 | HasanZ, JunJ W, JhungS H. Sulfonic acid-functionalized MIL-101(Cr): an efficient catalyst for esterification of oleic acid and vapor-phase dehydration of butanol[J]. Chem. Eng. J., 2015, 278: 265-271. |
15 | NingY, NiuS. Preparation and catalytic performance in esterification of a bamboo-based heterogeneous acid catalyst with microwave assistance[J]. Energy Convers. Manage., 2017, 153: 446-454. |
16 | LieuT, YusupS, MoniruzzamanM. Kinetic study on microwave-assisted esterification of free fatty acids derived from Ceiba pentandra seed oil[J]. Bioresour. Technol., 2016, 211: 248-256. |
17 | KongP S, ArouaM K, DaudW M A W, et al. Enhanced microwave catalytic-esterification of industrial grade glycerol over Brønsted-based methane sulfonic acid in production of biolubricant[J]. Process Saf. Environ. Prot., 2016, 104: 323-333. |
18 | MaL L, LvE M, DuL X, et al. Statistical modeling/optimization and process intensification of microwave-assisted acidified oil esterification[J]. Energy Convers. Manage., 2016, 122: 411-418. |
19 | JermoloviciusL A, CantagessoL C M, do NascimentoR B, et al. Microwave fast-tracking biodiesel production[J]. Chem. Eng. Process., 2017, 122: 380-388. |
20 | LiX, CaoJ, BaiX P, et al. Chemical composition and thermal properties of Tilapia oil extracted by different methods[J]. Int. J. Food Prop., 2018, 21(1): 1575-1585. |
21 | TehY Y, LeeK T, ChenW H, et al. Dilute sulfuric acid hydrolysis of red macroalgae Eucheuma denticulatum with microwave-assisted heating for biochar production and sugar recovery[J]. Bioresour. Technol., 2017, 246: 20-27. |
22 | FanJ, SantomauroF, BudarinV L, et al. The additive free microwave hydrolysis of lignocellulosic biomass for fermentation to high value products[J]. J. Cleaner Prod., 2018, 198: 776-784. |
23 | LinY C, ShangdiarS, ChenS C, et al. Microwave irradiation with dilute acid hydrolysis applied to enhance the saccharification rate of water hyacinth (Eichhornia crassipes)[J]. Renewable Energy, 2018, 125: 511-517. |
24 | TsubakiS, OonoK, UedaT, et al. Microwave-assisted hydrolysis of polysaccharides over polyoxometalate clusters[J]. Bioresour. Technol., 2013, 144: 67-73. |
25 | ChenJ Y, DingS Y, JiY M, et al. Microwave-enhanced hydrolysis of poultry feather to produce amino acid[J]. Chem. Eng. Process., 2015, 87: 104-109. |
26 | LeeY S, PhangL Y, AhmadS A, et al. Microwave-alkali treatment of chicken feathers for protein hydrolysate production[J]. Waste and Biomass Valorization, 2016, 7(5): 1147-1157. |
27 | WangS, YangZ, PengN, et al. Optimization of ionic liquids-based microwave-assisted hydrolysis of puerarin and daidzein derivatives from Radix Puerariae Lobatae extract[J]. Food Chemistry, 2018, 256: 149-155. |
28 | RomanoP N, De AlmeidaJ M A R, CarvalhoY, et al. Microwave-assisted selective hydrogenation of furfural to furfuryl alcohol employing a green and noble metal-free copper catalyst[J]. Chemsuschem, 2016, 9(24): 3387-3392. |
29 | Sánchez-RodríguezE P, Fragoso-MedinaA J, Ramírez-MenesesE, et al. [N,P]-pyrrole-phosphine ligand: an efficient and robust ligand for Ru-catalyzed transfer hydrogenation microwave-assisted reactions[J]. Catal. Commun., 2018, 115: 49-54. |
30 | KeenanC S, MurphreeS S. Rapid and convenient conversion of nitroarenes to anilines under microwave conditions using nonprecious metals in mildly acidic medium[J]. Synth. Commun., 2017, 47(11): 1085-1089. |
31 | DattaK J, RathiA K, KumarP, et al. Synthesis of flower-like magnetite nanoassembly: application in the efficient reduction of nitroarenes[J]. Scientific Reports, 2017, 7: 11585. |
32 | PeyrotC, VivesT, LegentilL, et al. Microwave-assisted reduction of nitroarenes by aminothiophenol/dithiotreitol[J]. Chemistryselect, 2017, 2(18): 5214-5217. |
33 | TussingS, ParadiesJ. Microwave-assisted FLP-catalyzed hydrogenations[J]. Dalton Trans., 2016, 45(14): 6124-6128. |
34 | VoiryD, YangJ, KupferbergJ, et al. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide[J]. Science, 2016, 353(6306): 1413-1416. |
35 | ChabanV V, PrezhdoO V. Microwave reduction of graphene oxide rationalized by reactive molecular dynamics[J]. Nanoscale, 2017, 9(11): 4024-4033. |
36 | KokelA, SchaferC, TorokB. Application of microwave-assisted heterogeneous catalysis in sustainable synthesis design[J]. Green Chemistry, 2017, 19(16): 3729-3751. |
37 | MartinsN M R, PombeiroA J L, MartinsL M D R S. A green methodology for the selective catalytic oxidation of styrene by magnetic metal-transition ferrite nanoparticles[J]. Catal. Commun., 2018, 116: 10-15. |
38 | RibeiroA P C, MartinsL M D R S, CarabineiroS A C, et al. Heterogenized C-scorpionate iron(Ⅱ) complex on nanostructured carbon materials as recyclable catalysts for microwave-assisted oxidation reactions [J]. Chemcatchem, 2018, 10(8): 1821-1828. |
39 | HamzehlouiaS, ShabanianJ, LatifiM, et al. Effect of microwave heating on the performance of catalytic oxidation of n-butane in a gas-solid fluidized bed reactor[J]. Chem. Eng. Sci., 2018, 192: 1177-1188. |
40 | PujolM D, NavarroL. Oxidation of aldehydes and alcohols to carboxylic acids using NaClO under microwave irradiation or classical heating without a catalyst[J]. Lett. Org. Chem., 2018, 15(6): 534-539. |
41 | MauryaM R, SainiN, AvecillaF. Liquid phase versus microwave assisted selective oxidation of volatile organic compounds involving dioxidomolybdenum(Ⅵ) and oxidoperoxidomolybdenum(Ⅵ) complexes as catalysts in the presence/absence of an N-based additive[J]. Polyhedron, 2015, 90: 221-232. |
42 | ManginF, PrinsenP, YepezA, et al. Microwave assisted benzyl alcohol oxidation using iron particles on furfuryl alcohol derived supports[J]. Catal. Commun., 2018, 104: 67-70. |
43 | CaporasoM, CravottoG, GeorgakopoulosS, et al. Pd/C-catalyzed aerobic oxidative esterification of alcohols and aldehydes: a highly efficient microwave-assisted green protocol[J]. Beilstein J. Org. Chem., 2014, 10: 1454-1461. |
44 | HandayaniS, BudimarwantiC, HaryadiW. Microwave-assisted organic reactions: eco-friendly synthesis of dibenzylidenecyclohexanone derivatives via crossed aldol condensation[J]. Indones. J. Chem., 2017, 17(2): 336-341. |
45 | HandayaniS, BudimarwantiC, HaryadiW. Novel synthesis of substituted benzylidenecyclohexanone by microwave assisted organic synthesis[C]//International Conference on Chemistry, Chemical Process and Engineering (IC3PE). Indonesia: Yogyakarta, 2017. |
46 | ZhangA R, XiaoH Y, PengC C, et al. Microwave-assisted synthesis of novel julolidinyl-based nonlinear optical chromophores with enhanced electro-optic activity[J]. RSC Adv., 2014, 4(110): 65088-65097. |
47 | 於祥, 陈娅芳. 微波辅助合成5-芳亚甲基-2,3-二苯基噻唑-4-酮类衍生物[J]. 化学通报, 2018, 81(7): 657-659. |
YuX, ChenY F. Microwave-assisted synthesis of 5-arylienne-2,3-diphenylthiazolidin-4-one derivatives[J]. Chemistry, 2018, 81(7): 657-659. | |
48 | MorenoL M, QuirogaJ, AboniaR, et al. Synthesis of new 1,3,5-triazine-based 2-pyrazolines as potential anticancer agents[J]. Molecules, 2018, 23(8): 1956. |
49 | UpadhyayS, TripathiA, PaliwalS, et al. Facile one-pot synthesis methodology for nitrogen-containing heterocyclic derivatives of 3,5-disubstituted 4,5-dihydro-1h-pyrazole, their biological evaluation and molecular docking studies[J]. Pharm. Chem. J., 2017, 51(7): 564-575. |
50 | 李洪, 崔俊杰, 李鑫钢, 等. 微波场强化化工分离过程研究进展[J]. 化工进展, 2016, 35(12): 3735-3745. |
LiH, CuiJ J, LiX G, et al. Recent developments in microwave-assisted chemical separation processes[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3735-3745. | |
51 | DahmouneF, NayakB, MoussiK, et al. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves[J]. Food Chemistry, 2015, 166: 585-595. |
52 | EkezieF G C, SunD W, ChengJ H. Acceleration of microwave-assisted extraction processes of food components by integrating technologies and applying emerging solvents: a review of latest developments[J]. Trends Food Sci. Technol., 2017, 67: 160-172. |
53 | AbediA S, RismanchiM, ShahdoostkhanyM, et al. Microwave-assisted extraction of Nigella sativa L. essential oil and evaluation of its antioxidant activity[J]. Journal of Food Science and Technology-Mysore, 2017, 54(12): 3779-3790. |
54 | TongkhamN, JuntasalayB, LasunonP, et al. Dragon fruit peel pectin: microwave-assisted extraction and fuzzy assessment[J]. Agriculture and Natural Resources, 2017, 51(4): 262-267. |
55 | HosseiniS S, KhodaiyanF, YarmandM S. Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties[J]. Carbohydr. Polym., 2016, 140: 59-65. |
56 | KeisandokhtS, HaddadN, GariepyY, et al. Screening the microwave-assisted extraction of hydrocolloids from Ocimum basilicum L. seeds as a novel extraction technique compared with conventional heating-stirring extraction[J]. Food Hydrocolloids, 2018, 74: 11-22. |
57 | OlalereO A, AbdurahmanN H, AlaraO R, et al. Parametric optimization of microwave reflux extraction of spice oleoresin from white pepper (Piper nigrum)[J]. J. Anal. Sci. Technol., 2017, 8(1): 8. |
58 | AlbuquerqueB R, PrietoM A, BarreiroM F, et al. Catechin-based extract optimization obtained from Arbutus unedo L. fruits using maceration/microwave/ultrasound extraction techniques[J]. Ind. Crops Prod., 2017, 95: 404-415. |
59 | XuJ K, HouH J, HuJ P, et al. Optimized microwave extraction, characterization and antioxidant capacity of biological polysaccharides from Eucommia ulmoides oliver leaf[J]. Scientific Reports, 2018, 8: 6561. |
60 | KovacevicD B, MarasM, BarbaF J, et al. Innovative technologies for the recovery of phytochemicals from Stevia rebaudiana Bertoni leaves: a review[J]. Food Chemistry, 2018, 268: 513-521. |
61 | PutnikP, KovacevicD B, PenicM, et al. Microwave-assisted extraction (MAE) of dalmatian sage leaves for the optimal yield of polyphenols: HPLC-DAD identification and quantification[J]. Food Analytical Methods, 2016, 9(8): 2385-2394. |
62 | LefsihK, GiacomazzaD, DahmouneF, et al. Pectin from Opuntia ficus indica: optimization of microwave-assisted extraction and preliminary characterization[J]. Food Chemistry, 2017, 221: 91-99. |
63 | NigarH, Garcia-BañosB, Peñaranda-FoixF L, et al. Amine-functionalized mesoporous silica: a material capable of CO2 adsorption and fast regeneration by microwave heating[J]. AIChE Journal, 2016, 62(2): 547-555. |
64 | DuC F, XueY T, WuZ S, et al. Microwave-assisted one-step preparation of macadamia nut shell-based activated carbon for efficient adsorption of Reactive Blue[J]. New J. Chem., 2017, 41(24): 15373-15383. |
65 | WangL, YanW, HeC, et al. Microwave-assisted preparation of nitrogen-doped biochars by ammonium acetate activation for adsorption of acid red 18[J]. Appl. Surf. Sci., 2018, 433: 222-231. |
66 | LiY, TsendN, LiT, et al. Microwave assisted hydrothermal preparation of rice straw hydrochars for adsorption of organics and heavy metals[J]. Bioresour. Technol., 2019, 273: 136-143. |
67 | FengZ X, OdeliusK, RajaraoG K, et al. Microwave carbonized cellulose for trace pharmaceutical adsorption[J]. Chem. Eng. J., 2018, 346: 557-566. |
68 | HuangA S, WanL L, CaroJ. Microwave-assisted synthesis of well-shaped UiO-66-NH2 with high CO2 adsorption capacity[J]. Mater. Res. Bull., 2018, 98: 308-313. |
69 | PeresE C, SlavieroJ C, CunhaA M, et al. Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption[J]. J. Environ. Chem. Eng., 2018, 6(1): 649-659. |
70 | DengS, ZhangG S, LiangS, et al. Microwave assisted preparation of thio-functionalized polyacrylonitrile fiber for the selective and enhanced adsorption of mercury and cadmium from water[J]. ACS Sustainable Chem. Eng., 2017, 5(7): 6054-6063. |
71 | PanR R, FanF L, LiY, et al. Microwave regeneration of phenol-loaded activated carbons obtained from Arundo donax and waste fiberboard[J]. RSC Adv., 2016, 6(39): 32960-32966. |
72 | ShariatyP, LashakiM J, HashishoZ, et al. Effect of ETS-10 ion exchange on its dielectric properties and adsorption/microwave regeneration[J]. Sep. Purif. Technol., 2017, 179: 420-427. |
73 | FooK Y. Effect of microwave regeneration on the textural network, surface chemistry and adsorptive property of the agricultural waste based activated carbons[J]. Process Saf. Environ. Prot., 2018, 116: 461-467. |
74 | GeX Y, WuZ L, CravottoG, et al. Cork wastewater purification in a cooperative flocculation/adsorption process with microwave-regenerated activated carbon[J]. J. Hazard. Mater., 2018, 360: 412-419. |
75 | WangZ J, MaX T, WeiJ P, et al. Microwave irradiation s effect on promoting coalbed methane desorption and analysis of desorption kinetics[J]. Fuel, 2018, 222: 56-63. |
76 | CzechowskiJ, MajchrowiczI. Microwave and conventional treatment of low-cement high-alumina castables with different water to cement ratios(Ⅰ): Drying[J]. Ceram. Int., 2018, 44(1): 65-70. |
77 | ZielinskaM, SadowskiP, BlaszczakW. Combined hot air convective drying and microwave-vacuum drying of blueberries (Vaccinium corymbosum L.): drying kinetics and quality characteristics[J]. Drying Technol., 2016, 34(6): 665-684. |
78 | SongZ L, JingC M, YaoL S, et al. Coal slime hot air/microwave combined drying characteristics and energy analysis[J]. Fuel Process. Technol., 2017, 156: 491-499. |
79 | WangW D, XinF W, TuY N, et al. Pore structure development in Xilingol lignite under microwave irradiation[J]. J. Energy Inst., 2018, 91(1): 75-86. |
80 | ZielinskaM, RopelewskaE, MarkowskiM. Thermophysical properties of raw, hot-air and microwave-vacuum dried cranberry fruits (Vaccinium macrocarpon)[J]. LWT-Food Science and Technology, 2017, 85: 204-211. |
81 | ZhaoY T, JiangY J, ZhengB D, et al. Influence of microwave vacuum drying on glass transition temperature, gelatinization temperature, physical and chemical qualities of lotus seeds[J]. Food Chemistry, 2017, 228: 167-176. |
82 | MonteiroR L, LinkJ V, TribuziG, et al. Microwave vacuum drying and multi-flash drying of pumpkin slices[J]. J. Food Eng., 2018, 232: 1-10. |
83 | MonteiroR L, LinkJ V, TribuziG, et al. Effect of multi-flash drying and microwave vacuum drying on the microstructure and texture of pumpkin slices[J]. LWT-Food Science and Technology, 2018, 96: 612-619. |
84 | KipcakA S. Microwave drying kinetics of mussels (Mytilus edulis)[J]. Res. Chem. Intermed., 2017, 43(3): 1429-1445. |
85 | ChahbaniA, FakhfakhN, BaltiM A, et al. Microwave drying effects on drying kinetics, bioactive compounds and antioxidant activity of green peas (Pisum sativum L.)[J]. Food Biosci., 2018, 25: 32-38. |
86 | SurendharA, SivasubramanianV, VidhyeswariD, et al. Energy and exergy analysis, drying kinetics, modeling and quality parameters of microwave-dried turmeric slices[J].J. Therm. Anal. Calorim., 2018, 10.1007/s10973-018-7791-9. |
87 | Al-AliM, PeriasamyS, ParthasarathyR. Novel drying of formulated naproxen sodium using microwave radiation: characterization and energy comparison[J]. Powder Technol., 2018, 334: 143-150. |
88 | LiY H, QiY R, WuZ F, et al. Comparative study of microwave-vacuum and vacuum drying on the drying characteristics, dissolution, physicochemical properties, and antioxidant capacity of Scutellaria extract powder[J]. Powder Technol., 2017, 317: 430-437. |
89 | KimH S, KimJ H. Kinetics and thermodynamics of microwave-assisted drying of paclitaxel for removal of residual methylene chloride[J]. Process Biochem., 2017, 56: 163-170. |
90 | MingosD M P, BaghurstD R. Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry[J]. Cheminform, 1991, 22(36): 301-301. |
91 | 张力冉. 微波合成聚羧酸超塑化剂性能/热-非热效应研究[D]. 北京: 中国矿业大学(北京), 2015. |
ZhangL R. Study on the performance/thermal-athermal effect of microwave synthesis of polycarboxylic ether superplasticizer[D]. Beijing: China University of Mining & Technology(Beijing), 2015. | |
92 | 李昕皓. 微波加速有机反应的本质研究[D]. 北京: 北京化工大学, 2016. |
LiX H. Origin of the acceleration of organic reactions under microwave irradiation[D]. Beijing : Beijing University of Chemical Technology, 2016. | |
93 | KappeC O, PieberB, DallingerD. Microwave effects in organic synthesis: myth or reality?[J]. Angew. Chem., Int. Ed., 2013, 52(4): 1088-1094. |
94 | 徐文涛. 微波催化转化NO及微波效应的研究[D]. 湘潭: 湘潭大学, 2016. |
XuW T. Study on microwave catalytic conversion of nitric oxide and microwave effects[D]. Xiangtan: Xiangtan University, 2016. | |
95 | PrietoP, de la HozA, Díaz-OrtizA, et al. Understanding MAOS through computational chemistry[J]. Chem. Soc. Rev., 2017, 46(2): 431-451. |
96 | BorgesI, SilvaA M, Modesto-CostaL. Microwave effects on NiMoS and CoMoS single-sheet catalysts[J]. J. Mol. Model., 2018, 24(6): 128. |
97 | CabelloG, DavoglioR A, CuadradoL G. The role of small nanoparticles on the formation of hot spots under microwave-assisted hydrothermal heating[J]. Inorganic Chemistry, 2018, 57(12): 7252-7258. |
98 | FerrariA, HuntJ, StiegmanA, et al. Microwave-assisted superheating and/or microwave-specific superboiling (nucleation-limited boiling) of liquids occurs under certain conditions but is mitigated by stirring[J]. Molecules, 2015, 20(12): 21672-21680. |
99 | AsakumaY, MatsumuraS, SaptoroA. In-situ observation of nanoparticle formation under different power of microwave irradiation[J]. Cryst. Res. Technol., 2017, 52(9): 1700108. |
100 | AsakumaY, MatsumuraS, SaptoroA. Method for suppressing superheating behavior during microwave assisted nanoparticle formation by ethylene glycol addition[J]. Chemical Engineering and Processing - Process Intensification, 2018, 132: 11-15. |
101 | YangZ Y, YiH H, TangX L, et al. Potential demonstrations of “hot spots” presence by adsorption-desorption of toluene vapor onto granular activated carbon under microwave radiation[J]. Chem. Eng. J., 2017, 319: 191-199. |
102 | WangW L, WangB, SunJ, et al. Numerical simulation of hot-spot effects in microwave heating due to the existence of strong microwave-absorbing media[J]. RSC Adv., 2016, 6(58): 52974-52981. |
103 | 房奎圳, 张力冉, 王栋民, 等. 微波有机合成及在混凝土减水剂制备中的应用研究进展[J]. 化工进展, 2018, 37(4): 1575-1583. |
FangK Z, ZhangL R, WangD M, et al. Microwave organic synthesis and its application in concrete water-reducing agent[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1575-1583. | |
104 | GutmannB, SchwanA M, ReichartB, et al. Activation and deactivation of a chemical transformation by an electromagnetic field: evidence for specific microwave effects in the formation of grignard reagents[J]. Angew. Chem., Int. Ed., 2011, 50(33): 7636-7640. |
105 | LuoH, BaoL W, WangH, et al. Microwave-assisted in-situ elimination of primary tars over biochar: low temperature behaviours and mechanistic insights[J]. Bioresour. Technol., 2018, 267: 333-340. |
106 | HorikoshiS, OsawaA, AbeM, et al. On the generation of hot-spots by microwave electric and magnetic fields and their impact on a microwave-assisted heterogeneous reaction in the presence of metallic Pd nanoparticles on an activated carbon support[J]. J. Phys. Chem. C, 2011, 115(46): 23030-23035. |
107 | HorikoshiS, KamataM, MitaniT, et al. Control of microwave-generated hot spots. 6. generation of hot spots in dispersed catalyst particulates and factors that affect catalyzed organic syntheses in heterogeneous media[J]. Ind. Eng. Chem. Res., 2014, 53(39): 14941-14947. |
108 | LiX, XuJ. Determination on temperature gradient of different polar reactants in reaction mixture under microwave irradiation with molecular probe[J]. Tetrahedron, 2016, 72(35): 5515-5520. |
109 | KhalifeA, PathakU, RichertR. Heating liquid dielectrics by time dependent fields[J]. Eur. Phys. J. B, 2011, 83(4): 429-435. |
110 | HuangW, RichertR. Dynamics of glass-forming liquids( ): Microwave heating in slow motion[J]. J. Chem. Phys., 2009, 130(19): 194509. |
111 | HuangW, RichertR. The physics of heating by time-dependent fields: microwaves and water revisited[J]. J. Phys. Chem. B, 2008, 112(32): 9909-9913. |
112 | HorikoshiS, KamataM, SumiT, et al. Selective heating of Pd/AC catalyst in heterogeneous systems for the microwave-assisted continuous hydrogen evolution from organic hydrides: temperature distribution in the fixed-bed reactor[J]. Int. J. Hydrogen Energy, 2016, 41(28): 12029-12037. |
113 | RosanaM R, HuntJ, FerrariA, et al. Microwave-specific acceleration of a Friedel-Crafts reaction: evidence for selective heating in homogeneous solution[J]. J. Org. Chem., 2014, 79(16): 7437-7450. |
114 | DallingerD, IrfanM, SuljanovicA, et al. An investigation of wall effects in microwave-assisted ring-closing metathesis and cyclotrimerization reactions[J]. J. Org. Chem., 2010, 75(15): 5278-5288. |
115 | ChenC C, ReddyP M, DeviC S, et al. Study of microwave effects on the lipase-catalyzed hydrolysis[J]. Enzyme Microb. Technol., 2016, 82: 164-172. |
116 | KappeC O. Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology[J]. Acc. Chem. Res., 2013, 46(7): 1579-1587. |
117 | HorikoshiS, WatanabeT, NaritaA, et al. The electromagnetic wave energy effect(s) in microwave-assisted organic syntheses (MAOS)[J]. Scientific Reports, 2018, 8: 5151. |
118 | DudleyG B, RichertR, StiegmanA E. On the existence of and mechanism for microwave-specific reaction rate enhancement[J]. Chemical Science, 2015, 6(4): 2144-2152. |
119 | 王陆瑶, 孟东, 李璐. “热效应”或“非热效应”——微波加热反应机理探讨[J]. 化学通报, 2013, 76(8): 698-703. |
WangL Y, MengD, LiL. Thermal or nonthermal microwave effects——the mechanism of microwave heating[J]. Chemistry, 2013, 76(8): 698-703. | |
120 | DudleyG B, StiegmanA E. Changing perspectives on the strategic use of microwave heating in organic synthesis[J]. Chem. Rec., 2018, 18(3): 381-389. |
121 | HuY N, HeY Z, ChengH F. Microwave-induced degradation of N-nitrosodimethylamine (NDMA) sorbed in zeolites: effect of mineral surface chemistry and non-thermal effect of microwave[J]. J. Cleaner Prod., 2018, 174: 1224-1233. |
122 | NushiroK, KikuchiS, YamadaT. Extraordinary microwave effect on atropo-enantioselective catalytic reduction of biaryl lactones[J]. Chem. Lett., 2013, 42(2): 165-167. |
123 | TashimaS, NushiroK, SaitoK, et al. Microwave specific effect on catalytic atropo-enantioselective ring-opening reaction of biaryl lactones[J]. Bull. Chem. Soc. Jpn., 2016, 89(7): 833-835. |
124 | NushiroK, KikuchiS, YamadaT. Microwave effect on catalytic enantioselective Claisen rearrangement[J]. Chem. Commun., 2013, 49(75): 8371-8373. |
125 | HorikoshiS, WatanabeT, KamataM, et al. Microwave-assisted organic syntheses: microwave effect on intramolecular reactions — the Claisen rearrangement of allylphenyl ether and 1-allyloxy-4-methoxybenzene[J]. RSC Adv., 2015, 5(110): 90272-90280. |
126 | KapranovS V, KouzaevG A. Effects of microwave electric fields on the translational diffusion of dipolar molecules in surface potential: a simulation study[J]. Surface Science, 2018, 667: 66-78. |
127 | KishimotoF, ImaiT, FujiiS, et al. Microwave-enhanced photocatalysis on CdS quantum dots—evidence of acceleration of photoinduced electron transfer[J]. Scientific Reports, 2015, 5: 11308 |
128 | NishimotoY, YazawaS, KiyokawaK, et al. Effect of functional groups in organic chlorides on radical reduction with hydrostannane under microwave irradiation[J]. Chem. Lett., 2017, 46(8): 1116-1118. |
129 | ZhaiC K, TengN, PanB H, et al. Revealing the importance of non-thermal effect to strengthen hydrolysis of cellulose by synchronous cooling assisted microwave driving[J]. Carbohydr. Polym., 2018, 197: 414-421. |
130 | HorikoshiS, SerponeN. On the influence of the microwaves thermal and non-thermal effects in titania photoassisted reactions[J]. Catal. Today, 2014, 224: 225-235. |
131 | ZhouM, ChengK, SunH R, et al. Investigation of nonlinear output-input microwave power of DMSO-ethanol mixture by molecular dynamics simulation[J]. Scientific Reports, 2018, 8: 7186. |
132 | ZhengJ L, TolvanenP, TaoukB, et al. Synthesis of carbonated vegetable oils: investigation of microwave effect in a pressurized continuous-flow recycle batch reactor[J]. Chem. Eng. Res. Des., 2018, 132: 9-18. |
133 | LeT, JuS, KoppalaS, et al. Kinetics study of microwave enhanced reactions between diasporic bauxite and alkali solution[J]. J. Alloys Compd., 2018, 749: 652-663. |
134 | 郑成, 毛桃嫣, 卫云路, 等. 沸腾状态下十二烷基甲基二羟乙基溴化铵微波合成的动力学研究[J]. 精细化工, 2009, 26(2): 131-135. |
ZhengC, MaoT Y, WeiY L, et al. Study on the kinetics of the synthesis of dodecyl methyl dihydroxyethyl ammonium bromide[J]. Fine Chemicals, 2009, 26(2): 131-135. | |
135 | RosanaM R, TaoY C, StiegmanA E, et al. On the rational design of microwave-actuated organic reactions[J]. Chemical Science, 2012, 3(4): 1240-1244. |
136 | DudleyG B, StiegmanA E, RosanaM R. Correspondence on microwave effects in organic synthesis[J]. Angew. Chem., Int. Ed., 2013, 52(31): 7918-7923. |
137 | KappeC O. Reply to the correspondence on microwave effects in organic synthesis[J]. Angew. Chem., Int. Ed., 2013, 52(31): 7924-7928. |
138 | AnoT, KishimotoF, SasakiR, et al. In situ temperature measurements of reaction spaces under microwave irradiation using photoluminescent probes[J]. Phys. Chem. Chem. Phys., 2016, 18(19): 13173-13179. |
139 | 郑成, 林晓涛, 魏渊, 等. 季铵盐表面活性剂微波合成放大工艺研究[J]. 广州大学学报(自然科学版), 2018, 17(1): 40-46. |
ZhengC, LinX T, WeiY, et al. Study on the pilot synthesis of quaternary ammonium salt microwave[J]. Journal of Guangzhou University( Natural Science Edition), 2018, 17(1): 40-46. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[5] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[6] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[9] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[10] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[11] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[12] | 李彬, 徐正虎, 姜爽, 张天永. 双氧水催化氧化法清洁高效合成促进剂CBS[J]. 化工学报, 2023, 74(7): 2919-2925. |
[13] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[14] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[15] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||