化工学报 ›› 2019, Vol. 70 ›› Issue (10): 4072-4079.doi: 10.11949/j.issn.0438-1157.20190371

• 材料化学工程与纳米技术 • 上一篇    下一篇

制备方法对GO/P(NIPAM-MA)水凝胶La3+吸附性能的影响

杨新蔚1,2(),单国荣1,2(),曹志海3,吕挺4,潘鹏举1,2   

  1. 1. 化学工程联合国家重点实验室,浙江大学化学工程与生物工程学院,浙江 杭州 310027
    2. 浙江大学衢州研究院,浙江 衢州 324000
    3. 浙江理工大学先进纺织材料与制备技术教育部重点实验室,浙江 杭州 310018
    4. 杭州电子科技大学材料与环境工程学院,浙江 杭州 310018
  • 收稿日期:2019-04-10 修回日期:2019-05-09 出版日期:2019-10-05 发布日期:2019-10-05
  • 通讯作者: 单国荣 E-mail:475105259@qq.com;shangr@zju.edu.cn
  • 作者简介:杨新蔚(1995—),女,硕士研究生,475105259@qq.com

Effect of preparation methods on La3+ adsorption properties ofGO/P(NIPAM-MA) hydrogels

Xinwei YANG1,2(),Guorong SHAN1,2(),Zhihai CAO3,Ting LYU4,Pengju PAN1,2   

  1. 1. State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
    2. Institute of Zhejiang University-Quzhou, Quzhou 324000, Zhejiang, China
    3. Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
    4. College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
  • Received:2019-04-10 Revised:2019-05-09 Published:2019-10-05 Online:2019-10-05
  • Contact: Guorong SHAN E-mail:475105259@qq.com;shangr@zju.edu.cn

摘要:

用冷冻聚合法和非冷冻聚合法制备了氧化石墨烯/聚(N-异丙基丙烯酰胺-顺丁烯二酸)(GO/P(NIPAM-MA))水凝胶,比较制备方法对GO/P(NIPAM-MA)水凝胶La3+吸附能力的影响,发现通过冷冻聚合法合成的水凝胶,具有更加优异的溶胀-退溶胀性能和吸附性能。NIPAM与MA摩尔比为10∶1的冷冻聚合法水凝胶,在370 mg/L的LaCl3溶液中平衡吸附量为(29.87±0.073)mg/g,而相同条件下的非冷冻聚合法水凝胶平衡吸附量仅为(20.29±0.395)mg/g。冷冻聚合法水凝胶的Freundlich等温线拟合参数n值随着MA含量的增加呈线性增加,而非冷冻聚合法水凝胶增加幅度小于冷冻聚合法。经过5次吸附-解吸循环,冷冻聚合法水凝胶的形状和体积没有明显变化且吸附能力没有明显下降,而非冷冻聚合法水凝胶经过3次吸附-解吸循环就出现破碎,无法再使用。冷冻聚合法合成的GO/P(NIPAM-MA)水凝胶具有La3+平衡吸附量大、可重复使用等优点。

关键词: 吸附, 脱附, 水凝胶, 冷冻聚合, La3+

Abstract:

Graphene oxide/poly(N-isopropylacrylamide-maleic acid) (GO/P(NIPAM-MA)) hydrogel was prepared by freeze polymerization and non-freeze polymerization, and the preparation method was compared to GO/P(NIPAM-MA) hydrogel La3+ adsorption capacity. It was found that the hydrogel synthesized by freeze polymerization method has an excellent swelling-shrinking and adsorption properties. With an equivalent molar ratio of 10∶1 for NIPAM∶MA and 370 mg/L of LaCl3 solution, the equilibrium adsorption capacity of hydrogel synthesized by freeze polymerization method was (29.87±0.073) mg/g, while that of by non-freeze polymerization method was only (20.29±0.395) mg/g. Fitting parameter, n, of the Freundlich isotherm increased linearly with the increase of MA content for hydrogel synthesized by freeze polymerization method, and the increasing degree was larger than that of by non-freeze polymerization method. After five repeated adsorption-desorption cycles, it was found that there was no significant deformation and the adsorption capacity was not obviously decreased for hydrogel synthesized by freeze polymerization method, while it was broken after three repeated adsorption-desorption cycles for hydrogel synthesized by non-freeze polymerization method. The GO/P(NIPAM-MA) hydrogel synthesized by the freeze polymerization method has the advantages of large La3+ equilibrium adsorption capacity and reusability.

Key words: adsorption, desorption, hydrogel, freeze polymerization, La3+

中图分类号: 

  • TQ 314.2

图1

不同制备方法合成水凝胶的SEM图"

图2

两种制备方法合成水凝胶孔径分布"

图3

两种制备方法得到水凝胶溶胀/退溶胀动力学"

表1

制备方法对水凝胶平衡吸附量的影响"

n NIPAMn MA Equilibrium adsorption capacity, q e /(mg/g)
By freeze polymerization By non-freeze polymerization
10∶1 29.87±0.073 20.29±0.395
15∶1 25.61±0.084 17.43±0.257
20∶1 19.53±0.403 11.78±0.237
25∶1 15.56±0.166 9.94±0.046
30∶1 9.16±0.174 5.57±0.091
40∶1 3.95±0.171 3.84±0.131
PNIPAM 3.13±0.033 3.16±0.015

表2

两种制备方法合成的不同单体摩尔比水凝胶吸附实验数据Freundlich拟合结果"

n NIPAMn MA By freeze polymerization By non-freeze polymerization
1/n K 1/n K
10∶1 0.2011 9.0448 0.2791 4.6970
15∶1 0.2495 5.5447 0.3487 2.8022
20∶1 0.2989 3.3927 0.4332 1.2057
25∶1 0.3563 2.1598 0.5396 0.7828
30∶1 0.4197 1.4711 0.6097 0.3656
40∶1 0.5345 0.7539 0.6307 0.2673

图4

两种制备方法合成水凝胶的Freundlich拟合参数n随MA摩尔分数变化关系"

图5

两种方法制备的水凝胶由温度改变触发的溶胀/退溶胀循环比较(25℃中溶胀,60℃中退溶胀)"

图6

两种制备方法合成水凝胶的La3+吸附-脱附循环比较"

1 Rabl S , Haas A , Santi D , et al . Ring opening of cis-decalin on bifunctional Ir/- and Pt/La-X zeolite catalysts[J]. Applied Catalysis a General, 2011, 400(1): 131-141.
2 Wang F C , Zhao J M , Pan F , et al . Adsorption properties toward trivalent rare earths by alginate beads doping with silica[J]. Industrial & Engineering Chemistry Research, 2013, 52(9): 3453-3461.
3 Wilfong W C , Kai B W , Bank T L , et al . Recovering rare earth elements from aqueous solution with porous amine-epoxy networks[J]. ACS Applied Materials & Interfaces, 2017, 9(21): 18283-18294.
4 Tan Q Y , Li J H , Zeng X L . Rare earth elements recovery from waste fluorescent lamps: a review[J]. Critical Reviews in Environmental Science & Technology, 2015, 45(7): 749-776.
5 Brioschi L , Steinmann M , Lucot E , et al . Transfer of rare earth elements (REE) from natural soil to plant systems: implications for the environmental availability of anthropogenic REE[J]. Plant and Soil, 2013, 366(1/2): 143-163.
6 Diniz V , Weber M E , Volesky B , et al . Column biosorption of lanthanum and europium by Sargassum[J]. Water Research, 2008, 42(1/2): 363-371.
7 Zhang S Z , Shan X Q . Speciation of rare earth elements in soil and accumulation by wheat with rare earth fertilizer application[J]. Environmental Pollution, 2001, 112(3): 395-405.
8 Zhu S G , He W Z , Li G M , et al . Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(9): 2274-2281.
9 Matlock M M , Howerton B S , Atwood D A . Chemical precipitation of heavy metals from acid mine drainage[J]. Water Research, 2002, 36(19): 4757-4764.
10 Ramakul P , Mooncluen U , Yanachawakul Y , et al . Mass transport modeling and analysis on the mutual separation of lanthanum (Ⅲ) and cerium (Ⅳ) through a hollow fiber supported liquid membrane[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(5): 1606-1611.
11 Asai S , Watanabe K , Sugo T . Preparation of an extractant-impregnated porous membrane for the high-speed separation of a metal ion[J]. Journal of Chromatography A, 2005, 1094(1/2): 158-164.
12 Lam K F , Kassab H , Pera-titus M , et al . MCM-41 “LUS”: alumina tubular membranes for metal separation in aqueous solution[J]. The Journal of Physical Chemistry C, 2010, 115(1): 176-187.
13 Chevis D A , Johannesson K H , Burdige D J , et al . Submarine groundwater discharge of rare earth elements to a tidally-mixed estuary in Southern Rhode Island[J]. Chemical Geology, 2015, 397: 128-142.
14 Zhao Z Y , Sun X Q , Dong Y M . Synergistic effect of doped functionalized ionic liquids in silica hybrid material for rare earth adsorption[J]. Industrial & Engineering Chemistry Research, 2016, 55(7): 2221-2229.
15 Ghoul M , Bacquet M , Morcellet M . Uptake of heavy metals from synthetic aqueous solutions using modified PEI-silica gels[J]. Water Research, 2003, 37(4): 729-734.
16 Dragan E S . Design and applications of interpenetrating polymer network hydrogels. A review[J]. Chemical Engineering Journal, 2014, 243(5): 572-590.
17 Demirbilek C , Ö Dinc C . Synthesis of diethylaminoethyl dextran hydrogel and its heavy metal ion adsorption characteristics[J]. Carbohydrate Polymers, 2012, 90(2): 1159-1167.
18 Ma J , Yang M X , Yu F , et al . Water-enhanced removal of ciprofloxacin from water by porous graphene hydrogel[J]. Scientific Reports, 2015, 5: 13578.
19 Kumar R , Jain S K , Verma S , et al . Mercapto functionalized silica entrapped polyacrylamide hydrogel: arsenic adsorption behaviour from aqueous solution[J]. Journal of Colloid and Interface Science, 2015, 456: 241-245.
20 Niyogi S , Bekyarova E , Itkis M E , et al . Solution properties of graphite and graphene[J]. Journal of the American Chemical Society, 2006, 128(24): 7720-7721.
21 Geng H J . Preparation and characterization of cellulose/N,N’-methylene bisacrylamide/graphene oxide hybrid hydrogels and aerogels[J]. Carbohydrate Polymers, 2018, 196: 289-298.
22 Lerf A , He H Y , Forster M , et al . Structure of graphite oxide revisited[J]. Journal of Physical Chemistry B, 1998, 102(23): 4477-4482.
23 Liu M C , Chen C L , Hu J , et al . Synthesis of magnetite/graphene oxide composite and application for cobalt(Ⅱ) removal[J]. Journal of Physical Chemistry C, 2011, 115(51): 25234-25240.
24 Zhu C H , Lu Y , Peng J , et al . Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves[J]. Advanced Functional Materials, 2012, 22(19): 4017-4022.
25 Yamashita K , Nishimura T , Ohashi K , et al . Two-step imprinting procedure of inter-penetrating polymer network-type stimuli-responsive hydrogel-adsorbents[J]. Polymer Journal, 2003, 35(7): 545-550.
26 Zhang X Z , Yang Y Y , Chung T S . Effect of mixed solvents on characteristics of poly(N-isopropylacrylamide) gels[J]. Langmuir, 2002, 18(7): 2538-2542.
27 Kim J H , Lee S L , Kim S J , et al . Rapid temperature/pH response of porous alginate-g-poly(N-isopropylacrylamide) hydrogels[J]. Polymer, 2002, 43(26): 7549-7558.
28 Wu J J , Zhao Q , Sun J Z , et al . Preparation of poly(ethylene glycol) aligned porous cryogels using a unidirectional freezing technique[J]. Soft Matter, 2012, 8(13): 3620-3626.
29 Wu D B , Gao Y W , Li W J , et al . Selective adsorption of La3+ using a tough alginate-clay poly(N-isopropylacrylamide) hydrogel with hierarchical pores and reversible re-deswelling/swelling cycles[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6732-6743.
30 Kirsebom H , Mattiasson B . Cryostructuration as a tool for preparing highly porous polymer materials[J]. Polymer Chemistry, 2011, 2(5): 1059-1062.
31 Barrow M , Zhang H F . Aligned porous stimuli-responsive hydrogels via directional freezing and frozen UV initiated polymerization[J]. Soft Matter, 2013, 9(9): 2723-2729.
32 Cheng C , Zhang X L , Meng Y B , et al . Multiresponsive and biocompatible self-healing hydrogel: its facile synthesis in water, characterization and properties[J]. Soft Matter, 2017, 13(16): 3003-3012.
33 Liu L , Li L , Qing Y , et al . Mechanically strong and thermosensitive hydrogels reinforced with cellulose nanofibrils[J]. Polymer Chemistry, 2016, 7(46): 7142-7151.
34 Wang E , Desai M S , Lee S W . Light-controlled graphene-elastin composite hydrogel actuators[J]. Nano Letters, 2013, 13(6): 2826-2830.
35 Xue W , Champ S , Huglin M B , et al . Rapid swelling and deswelling in cryogels of crosslinked poly(N-isopropylacrylamide-acrylic acid)[J]. European Polymer Journal, 2004, 40(4): 703-712.
36 Cheng J J , Shan G R , Pan P J . Temperature and pH-dependent swelling and copper (Ⅱ) adsorption of poly(N-isopropylacrylamide) copolymer hydrogel[J]. RSC Advances, 2015, 5(76): 62091-62100.
37 Cheng J J , Shan G R , Pan P J . Triple stimuli-responsive N-isopropylacrylamide copolymer toward metal ion recognition and adsorption via a thermally induced sol-gel transition[J]. Industrial & Engineering Chemistry Research, 2017, 56(5): 1223-1232.
38 Arvidsson P , Plieva F M , Lozinsky V I , et al . Direct chromatographic capture of enzyme from crude homogenate using immobilized metal affinity chromatography on a continuous supermacroporous adsorbent[J]. Journal of Chromatography A, 2003, 986(2): 275-290.
[1] 赵继昊, 唐伟强, 徐小飞, 赵双良, 贺炅皓. 高分子复合材料中键合剂在不同纳米填料表面的吸附能计算[J]. 化工学报, 2022, 73(7): 3174-3181.
[2] 黄丽菁, 黄继娇, 李鹏辉, 刘芷诺, 蒋康杰, 吴文娟. 木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响[J]. 化工学报, 2022, 73(7): 3232-3239.
[3] 黄陆月, 刘畅, 许勇毅, 邢浩若, 王峰, 马双忱. CDI二维浓度传质模型的建立以及实验验证[J]. 化工学报, 2022, 73(7): 2933-2943.
[4] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[5] 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676.
[6] 张浩, 赵宇, 徐志明, 李晋辉. 羧甲基葡聚糖的快速沉降法阻垢特性研究[J]. 化工学报, 2022, 73(4): 1515-1522.
[7] 刘碧强, 曹海山. 基于流量校准的吸附测量方法及误差分析[J]. 化工学报, 2022, 73(4): 1597-1605.
[8] 王毅, 熊启钊, 陈杨, 杨江峰, 李立博, 李晋平. 锆基金属有机骨架材料用于氨吸附性能的研究[J]. 化工学报, 2022, 73(4): 1772-1780.
[9] 许世佩, 王超, 李庆远, 张炳康, 许世伟, 张雪琴, 王诗颖, 丛梦晓. 氧化钙对油基钻屑热脱附产物影响的研究[J]. 化工学报, 2022, 73(4): 1724-1731.
[10] 钟国栋, 邓超和, 王洋, 王佳韵, 王如竹. 蜂窝状水凝胶吸附床传热传质特性数值模拟及验证[J]. 化工学报, 2022, 73(3): 1083-1092.
[11] 王旭, 张乐瑶, 张昊轩, 演嘉辉, 吴玉帅, 吴冬, 陈汇勇, 马晓迅. 中空孔结构对W掺杂MFI分子筛丙酮吸附行为的研究[J]. 化工学报, 2022, 73(3): 1194-1206.
[12] 王祺, 房阔, 贺聪慧, 王凯军. 流动电极电容去离子技术综述:研究进展与未来挑战[J]. 化工学报, 2022, 73(3): 975-989.
[13] 刘轩, 苏银皎, 滕阳, 张锴, 王鹏程, 李丽锋, 李圳. 超低排放燃煤机组硒的迁移转化及飞灰对其富集特性[J]. 化工学报, 2022, 73(2): 923-932.
[14] 王洒, 温怡静, 郭丹煜, 周欣, 李忠. 锆基MOF次级结构单元调控及轻烃吸附分离性能增强[J]. 化工学报, 2022, 73(2): 730-738.
[15] 张超, 陈健, 殷文华, 沈圆辉, 钮朝阳, 余秀鑫, 张东辉, 唐忠利. 变压吸附氢气纯化过程瞬态分析[J]. 化工学报, 2022, 73(1): 308-321.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!