化工学报 ›› 2019, Vol. 70 ›› Issue (11): 4162-4171.DOI: 10.11949/j.issn.0438-1157.20190388
收稿日期:
2019-04-16
修回日期:
2019-07-31
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
孙宏军
作者简介:
孙宏军(1974—),女,博士,副教授,基金资助:
Hongjun SUN1(),Wei WANG1,Mingyang GUI2
Received:
2019-04-16
Revised:
2019-07-31
Online:
2019-11-05
Published:
2019-11-05
Contact:
Hongjun SUN
摘要:
环状流是常见的一种气液两相流流型,基于双平行电导探针阵列传感器设计了环状流液膜动态测量系统,以水和空气为介质,进行了气相表观流速15~35 m/s、液相表观流速0.1~0.4 m/s范围内的水平管环状流周向液膜测量实验,分析了水平管环状流的液膜厚度、相界面波动参数的空间分布与发展变化规律。结果表明,水平管环状流底部液膜厚度随气相表观流速的增加而减小,随液相表观流速的增加而增大,但在高液相表观流速时有饱和趋势,对应条件下周向其他位置的液膜厚度持续增大,尤其在45°位置显著增大,下半周液膜分布趋于平缓;由底部到顶部,液膜波速和波频在周向上均呈逐渐减小趋势,与液膜厚度的分布规律一致,大幅度的扰动波主要分布在底部;底部液膜波速和波频随气相表观流速增加而增大,液相表观流速增加时,波速随之增大,但波频无明显变化,对应波长增大。
中图分类号:
孙宏军, 王伟, 桂明洋. 水平管环状流液膜厚度与波动参数分布[J]. 化工学报, 2019, 70(11): 4162-4171.
Hongjun SUN, Wei WANG, Mingyang GUI. Distribution of liquid film thickness and wave parameters in horizontal annular flow[J]. CIESC Journal, 2019, 70(11): 4162-4171.
图6 不同气相表观流速下底部液膜时序信号(红色为上游信号,黑色为下游信号)
Fig.6 Time-domain signals of bottom liquid film at different superficial gas velocity(red for upstream signal, black for downstream signal)
1 | 李卫东, 李荣先, 王跃社, 等. 预测水平管气-液环状流周向液膜厚度分布的理论模型[J]. 化工学报, 2001, 52(3): 204-208. |
LiW D, LiR X, WangY S, et al. Model for prediction of circumferential distribution of film thickness in horizontal gas-liquid annular flow[J]. Journal of Chemical Industry and Engineering (China), 2001, 52(3): 204-208. | |
2 | SetyawanA, Indarto, Deendarlianto, et al. Experimental investigations of the circumferential liquid film distribution of air-water annular two-phase flow in a horizontal pipe[J]. Experimental Thermal and Fluid Science, 2017, 85: 95-118. |
3 | 赵宁, 王超, 孙宏军, 等. 一种测量环状流液膜参数的传感器研究[J]. 中南大学学报(自然科学版), 2018, 49(4): 231-238. |
ZhaoN, WangC, SunH J, et al. Measuring sensor of liquid film parameter in annular flow[J]. Journal of Central South University (Science and Technology), 2018, 49(4): 231-238. | |
4 | CioncoliniA, ThomeJ R. Liquid film circumferential asymmetry prediction in horizontal annular two-phase flow [J]. International Journal of Multiphase Flow, 2013, 51: 44-54. |
5 | 马晓旭, 田茂诚. U形弯头单元内气液两相流型及压降波动特性[J]. 化工学报, 2018, 69(5): 1972-1981. |
MaX X, TianM C. Flow regimes of gas-liquid two-phase flow in a U-bend unit and characteristics of pressure drop fluctuations[J]. CIESC Journal, 2018, 69(5): 1972-1981. | |
6 | 李卫东, 李荣先, 周力行. 水平管内气液环状流液膜及扰动波特性[J]. 清华大学学报(自然科学版), 2000, 40(11): 23-26. |
LiW D, LiR X, ZhouL X. Liquid layer and disturbance waves properties in horizontal annular flow[J]. Journal of Tsinghua University (Science and Technology), 2000, 40(11): 23-26. | |
7 | TiwariR, DamsohnM, PrasserH M, et al. Multi-range sensors for the measurement of liquid film thickness distributions based on electrical conductance[J]. Flow Measurement and Instrumentation, 2014, 40: 124-132. |
8 | SamarjeetC, BalajiC, VenkateshanS P. Non-intrusive measurement of thermal contact conductance at polymer-metal two-dimensional annular interface[J]. Heat and Mass Transfer, 2019, 55(2): 327-340. |
9 | ConeyM W E. The theory and application of conductance probes for the measurement of liquid film thickness in two-phase flow[J]. Journal of Pharmacy & Pharmacology, 1973, 19(11): 768-769. |
10 | WangC, ZhaoN, ChenC, et al. A method for direct thickness measurement of wave liquid film in gas-liquid two-phase annular flow using conductance probes[J]. Flow Measurement & Instrumentation, 2018, 62: 66-75. |
11 | 李广军, 郭烈锦, 陈学俊, 等. 气液两相流界面波的双平行电导探针测量方法研究[J]. 计量学报, 1997, 18(3): 167-172. |
LiG J, GuoL J, ChenX J, et al. Development of two parallel-wire conductance probe for measuring instantaneous liquid film thickness in gas-liquid two-phase flow[J]. Journal of Xi’an Jiaotong University, 1997, 18(3): 167-172. | |
12 | Al-SarkhiA, SaricaC, MagriniK. Inclination effects on wave characteristics in annular gas-liquid flows[J]. AIChE Journal, 2012, 58(4): 1018-1029. |
13 | AndreussiP, PittonE, CiandriP, et al. Measurement of liquid film distribution in near-horizontal pipes with an array of wire probes[J]. Flow Measurement Instrumentation, 2016, 47: 71-82. |
14 | 于培宁, 徐英, 张涛, 等. 基于截面气含率的文丘里湿气压降模型[J]. 化工学报, 2014, 65(12): 4692-4698. |
YuP N, XuY, ZhangT, et al. Venturi moisture pressure drop model based on cross-section gas hold up[J]. CIESC Journal, 2014, 65(12): 4692-4698. | |
15 | FossaM. Design and performance of a conductance probe for measuring the liquid fraction in two-phase gas-liquid flows[J]. Flow Measurement and Instrumentation, 1998, 9(2): 103-109. |
16 | 王超, 陈超, 赵宁, 等. 用于水平环状流周向液膜特性测量的电导探针阵列[J]. 电子测量与仪器学报, 2017, 31(9): 1408-1413. |
WangC, ChenC, ZhaoN, et al. Conductivity probe array for circumferential liquid film characteristic measurement in horizontal annular flow[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(9): 1408-1413. | |
17 | BakerO. Simultaneous flow of oil and gas[J]. Oil and Gas Journal, 1954, 26(7): 185-195. |
18 | BellK J, TaborekJ, FenoglioF. Interpretation of horizontal in-tube condensation heat transfer correlations with a two-phase flow regime map[J]. International Journal of Coal Geology, 1970, 65(1): 51-58. |
19 | ZhaoY, MarkideskC N, MatarO K, et al. Disturbance wave development in two-phase gas-liquid upwards vertical annular flow[J]. International Journal of Multiphase Flow, 2013, 55: 111-129. |
20 | HanH, ZhuZ, GabrielK. A study on the effect of gas flow rate on the wave characteristics in two-phase gas-liquid annular flow[J]. Nuclear Engineering and Design, 2006, 236(24): 2580-2588. |
21 | OusakaA, MopiokaI, FukanoT. Air-water annular two-phase flow in horizontal and near horizontal tubes disturbance wave characteristics and liquid transportation [J]. Multiphase Flow, 1992, 6(9): 80-87. |
22 | 赵宁, 王配配, 郭素娜, 等. 垂直管气液两相环状流的界面扰动波速度[J]. 化工学报, 2018, 69(7): 2926-2934. |
ZhaoN, WangP P, GuoS N, et al. Interfacial disturbance wave velocity of gas-liquid two-phase annular flow in vertical pipe[J]. CIESC Journal, 2018, 69(7): 2926-2934. | |
23 | AzzopardiB J. Disturbance wave frequencies, velocities and spacing in vertical annular two-phase flow[J]. Nuclear Engineering and Design, 1986, 92(2): 121-133. |
24 | AlekseenkoS, AntipinV, CherdantsevA, et al. Two-wave structure of liquid film and wave interrelation in annular gas-liquid flow with and without entrainment[J]. Physics of Fluids, 2009, 21(6): 061701. |
25 | 连龙杰, 林伟国, 吴海燕. 基于功率谱比对的液氯输送管道泄漏检测方法[J]. 化工学报, 2013, 64(12): 4461-4467. |
LianL J, LinW G, WuH Y. Liquid-chlorine leak detection method based on power spectrum comparison[J]. CIESC Journal, 2013, 64(12): 4461-4467. | |
26 | 孙宏军, 桂明洋, 赵宁. 垂直管气液两相环状流界面扰动波频率特性[J]. 化工学报, 2018, 69(5): 1915-1922. |
SunH J, GuiM Y, ZhaoN. Frequency characteristics of interfacial perturbation waves in gas-liquid two-phase annular flow in vertical pipes [J]. CIESC Journal, 2018, 69(5): 1915-1922. | |
27 | SheddT A, NewellT A. Characteristics of the liquid film and pressure drop in horizontal, annular, two-phase flow through round, square and triangular tubes[J]. Journal of Fluids Engineering, 2004, 126(5): 807-817. |
28 | DasguptaA, ChandrakerD K, KshirasagarS, et al. Experimental investigation on dominant waves in upward air-water two-phase flow in churn and annular regime[J]. Experimental Thermal and Fluid Science, 2016, 81: 147-163. |
29 | HurlburtE T, NevwellT A. Optical measurement of liquid film thickness and wave velocity in liquid film flows[J]. Experiments in Fluids, 1995, 21(5): 357-362. |
30 | ButterworthD. Two-phase flow and heat transfer[J]. Transport Phenomena in Multiphase Systems, 2005, 68(2): 853-949. |
31 | SrtyawanA, Indarto, Deendarlianto. The effect of the fluid properties on the wave velocity and wave frequency of gas-liquid annular two-phase flow in a horizontal pipe[J]. Experimental Thermal & Fluid Science, 2016, 71: 25-41. |
32 | SchubringD, SheddT A. Prediction of wall shear for horizontal annular air-water flow[J]. International Journal of Heat & Mass Transfer, 2009, 52(1/2): 200-209. |
33 | SchubringD, SheddT A. Wave behavior in horizontal annular air-water flow[J]. International Journal of Multiphase Flow, 2008, 34(7): 636-646. |
34 | ParasS V, KarabelasA J. Properties of the liquid layer in horizontal annular flow[J]. International Journal of Multiphase Flow, 1991, 17(4): 439-454. |
[1] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[2] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[3] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[4] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[7] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[8] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[9] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[10] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[11] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[12] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[13] | 邵伟明, 韩文学, 宋伟, 杨勇, 陈灿, 赵东亚. 基于分布式贝叶斯隐马尔可夫回归的动态软测量建模方法[J]. 化工学报, 2023, 74(6): 2495-2502. |
[14] | 郑志航, 马郡男, 闫子涵, 卢春喜. 提升管射流影响区内压力脉动特性研究[J]. 化工学报, 2023, 74(6): 2335-2350. |
[15] | 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||