李倩, 程景才, 杨超, 毛在砂
收稿日期:
2014-01-02
修回日期:
2014-03-26
出版日期:
2014-05-05
发布日期:
2014-05-05
通讯作者:
程景才
基金资助:
国家自然科学基金项目(21106154);国家重点基础研究发展计划项目(2010CB630904);国家杰出青年科学基金项目(21025627)。
LI Qian, CHENG Jingcai, YANG Chao, MAO Zaisha
Received:
2014-01-02
Revised:
2014-03-26
Online:
2014-05-05
Published:
2014-05-05
Supported by:
supported by the National Natural Science Foundation of China (21106154), the National Basic Research Program of China (2010CB630904) and the National Science Fund for Distinguished Young Scholars (21025627).
摘要: 群体平衡方程(population balance equation,PBE)是描述多相流体系中分散相大小与分布随时空变化的通用方程。搅拌反应器内多为多相流体系,考虑到颗粒聚并、破碎等微观机制对颗粒大小、分布、粒数密度等宏观参量的影响,采用PBE对搅拌槽内多相流体系进行数值模拟,可以较准确预测搅拌槽内流场和颗粒的大小与分布。对群体平衡方程在搅拌反应器数值模拟中的应用进行了综述,在简要介绍PBE的基本形式后,讨论了PBE的主要数值求解方法,然后着重介绍近年来采用PBE对搅拌槽内液固沉淀过程、气液及液液体系进行数值模拟的情况,并对今后的研究方向进行了展望。
中图分类号:
李倩, 程景才, 杨超, 毛在砂. 群体平衡方程在搅拌反应器模拟中的应用[J]. 化工学报, DOI: 10.3969/j.issn.0438-1157.2014.05.008.
LI Qian, CHENG Jingcai, YANG Chao, MAO Zaisha. Application of population balance equation in numerical simulation of multiphase stirred tanks[J]. CIESC Journal, DOI: 10.3969/j.issn.0438-1157.2014.05.008.
[1] | Hulburt H M, Katz S. Some problems in particle technology: a statistical mechanical formulation [J]. Chem. Eng. Sci., 1964, 19(8):555-574 |
[2] | Randolph A D, Larson M A. Theory of Particulate Processes [M]. 2nd ed.San Diego, CA: Academic Press,1988 |
[3] | Cheng Jingcai(程景才). Precipitation kinetics of nickel hydroxide and numerical simulation of continuous precipitation process in a stirred tank [D]. Beijing: Institute of Process Engineering, Chinese Academy of Science, 2009 |
[4] | Cheng J C, Yang C, Mao Z S. CFD-PBE simulation of premixed continuous precipitation incorporating nucleation, growth and aggregation in a stirred tank with multi-class method [J]. Chem. Eng. Sci., 2012, 68(1):469-480 |
[5] | Smith M, Matsouka T. Constant-number Monte Carlo simulation of population balances [J]. Chem. Eng. Sci., 1998, 53(9):1777-1786 |
[6] | McGraw R. Description of aerosol dynamics by the quadrature method of moments [J]. Aerosol Science and Technology, 1997, 27(2):255-265 |
[7] | Marchisio D L, Pikturna J T, Fox R O, et al. Quadrature method of moments for population-balance equations [J]. AIChE J., 2003, 49(5):1266-1276 |
[8] | Fan R, Marchisio D L, Fox R O. Application of the direct quadrature method of moments to polydisperse gas-solid fluidized beds [J]. Powder Technol., 2004, 139: 7- 20 |
[9] | Attarakih M M, Drumm C, Bart H J. Solution of the population balance equation using the sectional quadrature method of moments [J]. Chem. Eng. Sci., 2009, 64: 742-752 |
[10] | Rigopoulos S, Jones A G. Finite-element scheme for solution of the dynamic population balance equation [J]. AIChE J., 2003, 49: 1127-1139 |
[11] | Kumar S, Ramkrishna D. On the solution of population balance equations by discretization(1): A fixed pivot technique [J]. Chem. Eng. Sci., 1996, 51(8): 1311-1332 |
[12] | Kumar J, Peglow M, Warneke G, et al. Improved accuracy and convergence of discretized population balance for aggregation: the cell average technique [J]. Chem. Eng. Sci., 2006, 61(10): 3327-3342 |
[13] | Kostoglou M. Extended cell average technique for the solution of coagulation equation [J]. Journal of Colloid and Interface Science, 2007, 306(1): 72-81 |
[14] | Kumar S, Ramkrishna D. On the solution of population balance equations by discretization(2): A moving pivot technique [J]. Chem. Eng. Sci., 1996, 51(8):1333-1342 |
[15] | Kumar J, Peglow M, Warneke G, et al. An efficient numerical technique for solving population balance equation involving aggregation, breakage, growth and nucleation [J]. Powder Technology, 2008, 182(1): 81-104 |
[16] | Wang Tiefeng(王铁峰). Experimental study and numerical simulation on the hydrodynamics in gas-liquid (slurry) reactors [D]. Beijing: Tsinghua University, 2004 |
[17] | Wei H. Application of computational fluid dynamics techniques to the modelling of precipitation processes [D]. UK: UMIST,1997 |
[18] | Garside J, Wei H. Pumped stirred and maybe precipitated: simulation of precipitation process using CFD [J]. Acta Polytech. Scand., Chem. Technol. Metall. Ser., 1997, 244: 9-15 |
[19] | Jaworski Z, Nienow A W. CFD modelling of continuous precipitation of barium sulphate in a stirred tank [J]. Chem. Eng. J., 2003, 91: 167-174 |
[20] | Wang Z, Mao Z S, Yang C, Shen X Q. Computational fluid dynamics approach to the effect of mixing and draft tube on the precipitation of barium sulfate in a continuous stirred tank [J]. Chin. J. Chem. Eng., 2006, 14: 713-722 |
[21] | Vicum L, Mazzotti M. Multi-scale modeling of a mixing-precipitation process in a semibatch stirred tank [J]. Chem. Eng. Sci., 2007, 62: 3513-3527 |
[22] | Cheng J C, Yang C, Mao Z S, Zhao C J. CFD modeling of nucleation, growth, aggregation, and breakage in continuous precipitation of barium sulfate in a stirred tank [J]. Ind. Eng. Chem. Res., 2009, 48(15): 6992-7003 |
[23] | Ba?dyga J, Orciuch W. Closure problem for precipitation [J]. Chem. Eng. Res. Des., 1997, 75: 160-170 |
[24] | O'Hern H A, Rush F E. Effect of mixing conditions in barium sulfate precipitation [J]. I&EC Fundam., 1963, 2: 267-272 |
[25] | Pohorecki R, Baldyga J. The effects of micromixing and the manner of reactor feeding on precipitation in stirred tank reactors [J]. Chem. Eng. Sci., 1988,43(8): 1949-1954 |
[26] | Bakker A, van den Akker H E A. A computational model for the gas-liquid flow in stirred reactors [J]. Chem. Eng. Res. Des., 1994, 72: 594-606 |
[27] | Venneker B C H, Derksen J J, van den Akker H E A. Population balance modeling of aerated stirred vessels based on CFD [J]. AIChE J., 2002, 48(4): 673-685 |
[28] | Moilanen P, Laakkonen M, Visuri O, et al. Modelling mass transfer in an aerated 0.2 m3 vessel agitated by Rushton, Phasejet and Combijet impellers [J]. Chem. Eng. J., 2008, 142(1): 95-108 |
[29] | Montante G, Horn D, Paglianti A. Gas-liquid flow and bubble size distribution in stirred tanks [J]. Chem. Eng. Sci., 2008, 63(8): 2107-2118 |
[30] | Ranganathan P, Sivaraman S. Investigations on hydrodynamics and mass transfer in gas-liquid stirred reactor using computational fluid dynamics [J]. Chem. Eng. Sci., 2011, 66(14): 3108-3124 |
[31] | Kerdouss F, Bannari A, Proulx P, et al. Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model [J]. Comput. Chem. Eng., 2008, 32(8): 1943-1955 |
[32] | Martin M, Montes F, Galan M A. Mass transfer rates from bubbles in stirred tanks operating with viscous fluids [J]. Chem. Eng. Sci., 2010, 65(12): 3814-3824 |
[33] | Yang J, Bao Y Y, Lin M L, Zhu S, Gao Z M. Experimental study and numerical simulation of local void fraction in cold-gassed and hot-sparged stirred reactors [J]. Chem. Eng. Sci., 2013, 100: 83-90 |
[34] | Gimbun J, Rielly C D, Nagy Z K. Modelling of mass transfer in gas-liquid stirred tanks agitated by Rushton turbine and CD-6 impeller: a scale-up study [J]. Chem. Eng. Res. Des., 2009, 87: 437-451 |
[35] | Petitti M, Nasuti A, Marchisio D L, et al. Bubble size distribution modeling in stirred gas-liquid reactors with QMOM augmented by a new correction algorithm [J]. AIChE J., 2010, 56(1): 36-53 |
[36] | Maggioris D, Goulas A, Alexopoulos A H, et al. Prediction of particle size distribution in suspension polymerization reactors: effect of turbulence nonhomogeneity [J]. Chem. Eng. Sci., 2000, 55(20): 4611-4627 |
[37] | Maaß S, Metz F, Rehm T, Kraume M. Prediction of drop sizes for liquid-liquid systems in stirred slim reactors(Ⅰ): Single stage impellers[J]. Chem. Eng. J., 2010, 162(2): 792-801 |
[38] | Maaß S, Rehm T, Kraume M. Prediction of drop sizes for liquid-liquid systems in stirred slim reactors(Ⅱ): Multi stage impellers [J]. Chem. Eng. J., 2011, 168(2): 827-838 |
[39] | Maaß S, Paul N, Kraume M. Influence of the dispersed phase fraction on experimental and predicted drop size distributions in breakage dominated stirred systems [J]. Chem. Eng. Sci., 2012, 76: 140-153 |
[40] | Roudsari S F, Turcotte G, Dhib R, Ein-Mozaffari F. CFD modeling of the mixing of water in oil emulsions [J]. Comput. Chem. Eng., 2012, 45: 124-136 |
[41] | Sowbna P R, Yadav G D, Ramkrishna D. Population balance modeling and simulation of liquid-liquid-liquid phase transfer catalyzed synthesis of mandelic acid from benzaldehyde [J]. AIChE J., 2012, 58(12): 3799-3809 |
[42] | Olmos E, Gentric C, Vial C, Wild G, Midoux N. Numerical simulation of multiphase flow in bubble column reactors. Influence of bubble coalescence and break-up [J]. Chem. Eng. Sci., 2001, 56(21/22): 6359-6365 |
[43] | Wang T F, Wang J F, Jin Y. Population balance model for gas-liquid flows: influence of bubble coalescence and breakup models [J]. Ind. Eng. Chem. Res., 2005, 44(19): 7540-7549 |
[44] | Wang T F, Wang J F, Jin Y. A CFD-PBM coupled model for gas-liquid flows [J]. AIChE J., 2006, 52(1): 125-140 |
[45] | Wang T F, Wang J F. Numerical simulations of gas-liquid mass transfer in bubble columns with a CFD-PBM coupled model [J]. Chem. Eng. Sci., 2007, 62(24): 7107-7118 |
[46] | Xing C T, Wang T F, Wang J F. Experimental study and numerical simulation with a coupled CFD-PBM model of the effect of liquid viscosity in a bubble column [J]. Chem. Eng. Sci., 2013, 95: 313-322 |
[47] | Dhanasekharan K M, Sanyal J, Jain A, Haidari A. A generalized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics [J]. Chem. Eng. Sci., 2005, 60(1): 213-218 |
[48] | Silva M K, d'Avila M A, Mori M. CFD modelling of a bubble column with an external loop in the heterogeneous regime [J]. Can. J. Chem. Eng., 2011, 89(4): 671-681 |
[49] | Law D, Battaglia F. Numerical simulations for hydrodynamics of air-water external loop airlift reactor flows with bubble break-up and coalescence effects [J]. J. Fluids Eng.-Trans. ASME, 2013, 135(8): 0813021-0813029 |
[50] | Nandanwar M N, Kumar S. A new discretization of space for the solution of multi-dimensional population balance equations: simultaneous breakup and aggregation of particles [J]. Chem. Eng. Sci., 2008, 63: 3988-3997 |
[51] | Chauhan S S, Chakraborty J, Kumar S. On the solution and applicability of bivariate population balance equations for mixing in particle phase [J]. Chem. Eng. Sci., 2010, 65: 3914-3927 |
[52] | Kumar R, Kumar J, Warnecke G. Numerical methods for solving two-dimensional aggregation population balance equations [J]. Comput. Chem. Eng., 2011, 35(6): 999-1009 |
[53] | Chiney A, Kumar S. On the solution of bivariate population balance equations for aggregation: pivotwise expansion of solution domain [J]. Chem. Eng. Sci., 2012, 76: 14-25 |
[54] | Buffo A, Vanni M, Marchisio D L. Multidimensional population balance model for the simulation of turbulent gas-liquid systems in stirred tank reactors [J]. Chem. Eng. Sci., 2012, 70: 31-44 |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[9] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[10] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[11] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[12] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[13] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[14] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[15] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||