化工学报 ›› 2014, Vol. 65 ›› Issue (7): 2668-2675.DOI: 10.3969/j.issn.0438-1157.2014.07.026
戈钧, 卢滇楠, 朱晶莹, 刘铮
收稿日期:
2014-03-25
修回日期:
2014-04-02
出版日期:
2014-07-05
发布日期:
2014-07-05
通讯作者:
刘铮
基金资助:
国家自然科学基金项目(21036003,21206082)。
GE Jun, LU Diannan, ZHU Jingying, LIU Zheng
Received:
2014-03-25
Revised:
2014-04-02
Online:
2014-07-05
Published:
2014-07-05
Supported by:
supported by the National Natural Science Foundation of China (21036003, 21206082).
摘要: 酶催化具有化学、区位和立体选择性,这使得其成为绿色合成化学品的理想催化剂。然而,天然酶常因其在工业催化条件下的活性和稳定性较低而难以使用。纳米技术为构建高效酶催化剂提供了新的可能性。通过简便、高效、低成本的方法制备出具有高催化活性和高稳定性的纳米酶催化剂,同时提高纳米酶催化剂的可操作性和可回收重复使用特性是其中的关键问题。介绍了纳米酶催化剂的研究现状和制备方法,重点介绍了采用共沉淀方法制备酶-无机晶体杂化纳米催化剂、酶-金属有机骨架材料杂化纳米催化剂,以及制备具有温度和磁响应特性的纳米酶催化剂,并对纳米酶催化剂在酶催化合成医药化学品方面的应用前景进行了探讨。
中图分类号:
戈钧, 卢滇楠, 朱晶莹, 刘铮. 纳米酶催化剂制备方法研究进展[J]. 化工学报, 2014, 65(7): 2668-2675.
GE Jun, LU Diannan, ZHU Jingying, LIU Zheng. Advances in preparation of nanostructured enzyme catalysts[J]. CIESC Journal, 2014, 65(7): 2668-2675.
[1] | Li Z, Zhang Y, Lin M, Ouyang P, Ge J, Liu Z. Lipase-catalyzed one-step and regioselective synthesis of clindamycin palmitate[J]. Org. Process Res. Dev., 2013, 17: 1179-1182 |
[2] | Wang R, Zhang Y, Huang J, Lu D, Ge J, Liu Z. Substrate imprinted lipase nanogel for one-step synthesis of chloramphenicol palmitate[J]. Green Chem., 2013, 15: 1155-1158 |
[3] | Savile C K, Janey J M, Mundorff E C, Moore J C, Tam S, Jarvis W R, Colbeck J C, Krebber A, Fleitz F J, Brands J, Devine P N, Huisman G W, Hughes G J. Biocatalytic asymmetric synthesis of chiral amines fromketones applied to sitagliptin manufacture[J]. Science, 2010, 329:305-309 |
[4] | Ma S, Gruber J, Davis C, Newman L, Gray D, Wang A, Grate J, Huisman G, Sheldon R. A green-by-design biocatalytic process for atorvastatin intermediate[J]. Green Chem., 2010, 12:81-86 |
[5] | Bornscheuer U T, Huisman G W, Kazlauskas R J, Lutz S, Moore J C, Robins K. Engineering the third wave of biocatalysis[J]. Nature, 2012, 485:185-194 |
[6] | Pollard D, Woodley J. Biocatalysis for pharmaceutical intermediates: the future is now[J]. Trends Biotechnol., 2007, 25: 66-73 |
[7] | Patel R. Biocatalysis: synthesis of key intermediates for development of pharmaceuticals[J]. ACS Catal., 2011, 1: 1056-1074 |
[8] | Schmid A, Dordick J, Hauer B, Kiener A, Wubbolts M, Witholt B. Industrial biocatalysis today and tomorrow[J]. Nature, 2001, 409:258-268 |
[9] | Wu H, Xu J, Tsang S. Efficient resolution of a chiral alcohol (RS)-HMPC by enzymatic transesterification with vinyl acetate using surfactant-modified lipase[J]. Enzyme Microb. Technol., 2004, 34: 523-528 |
[10] | Zhao X, Wei D, Song Q, Zhang M. Study of ibuprofen glucopyranoside derivative synthesis by Candida antarctica lipase in organic solvent[J]. Prep. Biochem. Biotechnol., 2007, 37: 27-38 |
[11] | Song Q, Wei D. Study of vitamin C ester synthesis by immobilized lipase from Candida sp[J]. J. Mol. Catal. B: Enzym., 2002, 18: 261-266 |
[12] | Li N, Zong M, Liu X, Ma D. Regioselective synthesis of 3′-O-caproyl-floxuridine catalyzed by Pseudomonas cepacia lipase[J]. J. Mol. Catal. B: Enzym., 2007, 47: 6-12 |
[13] | Yin C, Liu T, Tan T. Synthesis of vitamin A esters by immobilized Candida sp. lipase in organic media[J]. Chin. J. Chem. Eng., 2006, 14: 81-86 |
[14] | Singh R K, Tiwari M K, Singh R, Lee J K. From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes[J]. International Journal of Molecular Sciences, 2013, 14: 1232-1277 |
[15] | Zhang Songping(张松平), Wang Ping(王平). Chemical modification of enzymes—an important tool to enhance the performance of biocatalysts [J]. Chinese Journal of Bioprocess Engineering(生物加工过程), 2006, 4(1): 4-8 |
[16] | Liu Renlin(刘仁霖), Luo Hui(罗晖), Chang Yanhong(常雁红), Sun Chunbao(孙春宝). Research progress of nanometer-scale immobilization of enzyme[J]. Sci. Tech. Engng.(科学技术与工程), 2007, 7(7): 1411-1415 |
[17] | Sun Jianhua(孙建华), Dai Rongji(戴荣继), Deng Yulin(邓玉林). Progress in enzyme immobilization technique [J]. Chemical Industry and Engineering Progress(化工进展), 2010, 29(4): 715-721 |
[18] | Su Long(苏龙), Zhuang Yu(庄宇), He Bingfang(何冰芳). Recent advances in directed evolution of enzymes and its application in industrial biocatalysis[J]. Chinese Journal of Bioprocess Engineering(生物加工过程), 2011, 9(4): 69-75 |
[19] | Zhang N, Suen W C, Windsor W, Xiao L, Madison V, Zaks A. Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution[J]. Protein Eng.,2003, 16: 599-605 |
[20] | Sharma P K, Kumar R, Mohammad O, Singh R, Kaur J. Engineering of a metagenome derived lipase toward thermal tolerance: effect of asparagine to lysine mutation on the protein surface[J]. Gene, 2012, 491: 264-271 |
[21] | Sriprapundh D, Vieille C, Zeikus J G. Directed evolution of Thermotoga neapolitana xylose isomerase: high activity on glucose at low temperature and low pH[J]. Protein Eng., 2003, 16: 683-690 |
[22] | Zhong C Q, Song S, Fang N, Liang X, Zhu H, Tang X F, Tang B. Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesis[J]. Biotechnol. Bioeng., 2009, 104: 862-870 |
[23] | Le Q A, Joo J C, Yoo Y J, Kim Y H. Development of thermostable Candida antarctica lipase B through novel in silico design of disulfide bridge[J]. Biotechnol. Bioeng., 2012, 109: 867-876 |
[24] | Huang J W, Cheng Y S, Ko T P, Lin C Y, Lai H L, Chen C C, Ma Y, Zheng Y, Huang C H, Zou P, Liu J R, Guo R T. Rational design to improve thermostability and specific activity of the truncated Fibrobacter succinogenes 1,3-1,4-b-D-glucanase[J]. Appl. Microbiol. Biotechnol., 2012, 94: 111-121 |
[25] | Ge J, Yang C, Zhu J, Lu D, Liu Z. Nanobiocatalysis in organic media: opportunities for enzymes in nanostructures[J]. Top. Catal., 2012, 55: 1070-1080 |
[26] | Ge J, Lu D, Liu Z, Liu Z. Recent advances in nanostructured biocatalysts[J]. Biochem. Eng. J., 2009, 44: 53-59 |
[27] | Wang R, Zhang Y, Lu D, Ge J, Liu Z, Zare R N. Functional protein-organic/inorganic hybrid nanomaterials[J]. WIERs: Nanomed. Nanobi., 2013, 5: 320-328 |
[28] | Wang P. Nanoscale biocatalyst systems[J]. Curr. Opin. Biotechnol., 2006, 17: 574-579 |
[29] | Kim J, Grate J W, Wang P. Nanostructures for enzyme stabilization[J]. Chem. Eng. Sci., 2006, 61: 1017-1026 |
[30] | Luckarift H R, Spain J C, Naik R R, Stone M O. Enzyme immobilization in a biomimetic silica support[J]. Nat. Biotechnol., 2004, 22: 211-213 |
[31] | Wang Y, Caruso F. Mesoporous silica spheres as supports for enzyme immobilization and encapsulation[J]. Chem. Mater., 2005, 17: 953-961 |
[32] | Dyal A, Loos K, Noto M, Chang S W, Spagnoli C, Shafi K V, Ulman A, Cowman M, Gross R A. Activity of Candida rugosa lipase immobilized on gamma-Fe2O3 magnetic nanoparticles[J]. J. Am. Chem. Soc., 2003, 125: 1684-1685 |
[33] | Li J, Wang J, Gavalas V G, Atwood D A, Bachas L G. Alumina-pepsin hybrid nanoparticles with orientation-specific enzyme coupling[J]. Nano. Lett., 2003, 3: 55-58 |
[34] | Wu C, Bai S, Ansorge-Schumacher M B, Wang D. Nanoparticle cages for enzyme catalysis in organic media[J]. Adv. Mater., 2011, 23: 5694-5699 |
[35] | Asuri P, Karajanagi S S, Dordick J S, Kane R S. Directed assembly of carbon nanotubes at liquid-liquid interfaces: nanoscale conveyors for interfacial biocatalysis[J]. J. Am. Chem. Soc., 2006, 128: 1046-1047 |
[36] | Ji P, Tan H, Xu X, Feng W. Lipase covalently attached to multiwalled carbon nanotubes as an efficient catalyst in organic solvent[J]. AIChE J., 2010, 56: 3005-3011 |
[37] | Palocci C, Chronopoulou L, Venditti I, Cernia E, Diociaiuti M, Fratoddi I, Russo M V. Lipolytic enzymes with improved activity and selectivity upon adsorption on polymeric nanoparticles[J]. Biomacromolecules, 2007, 8: 3047-3053 |
[38] | Yu L, Banerjee I A, Gao X, Nuraje N, Matsui H. Fabrication and application of enzyme- incorporated peptide nanotubes[J]. Bioconjugate. Chem., 2005, 16: 1484-1487 |
[39] | Shi J, Zhang X, Zhang S, Wang X, Jiang Z. Incorporating mobile nanospheres in the lumen of hybrid microcapsules for enhanced enzymatic activity[J]. ACS Appl. Mater. Interfaces, 2013, 5: 10433-10436 |
[40] | Shi J, Wang X, Jiang Z, Liang Y, Zhu Y, Zhang C. Constructing spatially separated multienzyme system through bioadhesion-assisted bio-inspired mineralization for efficient carbon dioxide conversion[J]. Bioresour. Technol., 2012, 118: 359-366 |
[41] | Ji X, Wang P, Su Z, Ma G, Zhang S. Enabling multi-enzyme biocatalysis using coaxial-electrospun hollow nanofibers: redesign of artificial cells[J]. J. Mater. Chem. B, 2014, 2: 181-190 |
[42] | Zheng M, Su Z, Ji X, Ma G, Wang P, Zhang S. Magnetic field intensified bi-enzyme system with in situ cofactor regeneration supported by magnetic nanoparticles[J]. J. Biotechnol., 2013, 168: 212-217 |
[43] | Zhang Y, Chen Q, Ge J, Liu Z. Controlled display of enzyme activity with a stretchable hydrogel[J]. Chem. Commun., 2013, 49: 9815-9817 |
[44] | Abuchowski A, Mccoy J R, Palczuk N C, Vanes T, Davis F F. Effect of covalent attachment of polyethylene-glycol on immunogenicity and circulating life of bovine liver catalase[J]. J. Biol. Chem., 1977, 252: 3582-3586 |
[45] | Stayton P, Shimoboji T, Long C, Chilkoti A, Chen G, Harris J, Hoffman A. Control of protein- ligand recognition using a stimuli-responsive polymer[J]. Nature, 1995, 378: 472-474 |
[46] | Ito Y, Sugimura N, Kwon O, Imanishi Y. Enzyme modification by polymers with solubilities that change in response to photoirradiation in organic media[J]. Nat. Biotechnol., 1999, 17: 73-75 |
[47] | Ge J, Yan M, Lu D, Zhang M, Liu Z. Hyperbranched polymer conjugated lipase with enhanced activity and stability[J]. Biochem. Eng. J., 2007, 36: 93-99 |
[48] | Grotzky A, Nauser T, Erdogan H, Schluter A D, Walde P. A fluorescently labeled dendronized polymer-enzyme conjugate carrying multiple copies of two different types of active enzymes[J]. J. Am. Chem. Soc., 2012, 134: 11392-11395 |
[49] | Zhu J, Zhang Y, Lu D, Zare R N, Ge J, Liu Z. Temperature-responsive enzyme-polymer nanoconjugates with enhanced catalytic activities in organic media[J]. Chem. Commun., 2013, 49: 6090-6092 |
[50] | Yan M, Ge J, Liu Z, Ouyang P K. Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability[J]. J. Am. Chem. Soc., 2006, 128: 11008-11009 |
[51] | Ge J, Lu D, Wang J, Yan M, Lu Y, Liu Z. Molecular fundamentals of enzyme nanogels[J]. J. Phys. Chem. B, 2008, 112: 14319-14324 |
[52] | Ge J, Lu D, Wang J, Liu Z. Lipase nanogel catalyzed transesterification in anhydrous dimethyl sulfoxide[J]. Biomacromolecules, 2009, 10: 1612-1618 |
[53] | Ge J, Lu D, Yang C, Liu Z. A lipase-responsive vehicle using amphipathic polymer synthesized with the lipase as catalyst[J]. Macromol. Rapid Commun., 2011, 32: 546-550 |
[54] | Yan M, Liu Z, Lu D, Liu Z. Fabrication of single carbonic anhydrase nanogel against denaturation and aggregation at high temperature[J]. Biomacromolecules, 2007, 8: 560-565 |
[55] | Liu Z, Lu D, Yin L, Li J, Cui Y, Chen W, Liu Z. Strengthening the stability of a tunnel-shaped homotetramer protein with nanogels[J]. J. Phys. Chem. B, 2011, 115: 8875-8882 |
[56] | Yan M, Du J, Gu Z, Liang M, Hu Y, Zhang W, Priceman S, Wu L, Zhou Z, Liu Z, Segura T, Tang Y, Lu Y. A novel intracellular protein delivery platform based on single-protein nanocapsules[J]. Nat. Nanotechnol., 2010, 5: 48-54 |
[57] | Gu Z, Yan M, Hu B, Joo K I, Biswas A, Huang Y, Lu Y, Wang P, Tang Y. Protein nanocapsule weaved with enzymatically degradable polymeric network[J]. Nano. Lett., 2009, 9: 4533-4538 |
[58] | Liu Y, Du J, Yan M, Lau M, Hu J, Han H, Yang O, Liang S, Wei W, Wang H, Li J, Zhu X, Shi L, Chen W, Ji C, Lu Y. Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication[J]. Nat. Nanotechnol., 2013, 8: 187-192 |
[59] | Lin M, Lu D, Zhu J, Yang C, Zhang Y, Liu Z. Magnetic enzyme nanogel (MENG): a universal synthetic route for biocatalysts[J]. Chem. Comm., 2012, 48: 3315-3317 |
[60] | Wang R, Zhang Y, Huang J, Lu D, Ge J, Liu Z. Substrate imprinted lipase nanogel for one-step synthesis of chloramphenicol palmitate[J]. Green Chem., 2013, 15: 1155-1158 |
[61] | Ge J, Lei J, Zare R N. Bovine serum albumin-poly(methyl methacrylate) nanoparticles: an example of frustrated phase separation[J]. Nano. Lett., 2011, 11: 2551-2554 |
[62] | Kim J, Grate J W. Single-enzyme nanoparticles armored by a nanometer-scale organic/ inorganic network[J]. Nano. Lett., 2003, 3: 1219-1222 |
[63] | Lele B S, Murata H, Matyjaszewski K, Russell A J. Synthesis of uniform protein-polymer conjugates[J]. Biomacromolecules, 2005, 6: 3380-3387 |
[64] | Boyer C, Bulmus V, Liu J, Davis T P, Stenzel M H, Barner-Kowollik C. Well-defined protein- polymer conjugates via in situ RAFT polymerization[J]. J. Am. Chem. Soc., 2007, 129: 7145-7154 |
[65] | Heredia K L, Bontempo D, Ly T, Byers J T, Halstenberg S, Maynard H D. In situ preparation of protein-“Smart” polymer conjugates with retention of bioactivity[J]. J. Am. Chem. Soc., 2005, 127: 16955- 16960 |
[66] | Ge J, Lei J, Zare R N. Protein-inorganic hybrid nanoflowers[J]. Nat. Nanotechnol., 2012, 7: 428-432 |
[67] | Zhu L, Gong L, Zhang Y, Wang R, Ge J, Liu Z, Zare R N. Rapid detection of phenol using a membrane containing laccase nanoflowers[J]. Chem. Asian J., 2013, 8: 2358-2360 |
[68] | Sun J, Ge J, Liu W, Lan M, Zhang H, Wang P, Wang Y, Niu Z. Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor[J]. Nanoscale, 2014, 6: 255-262 |
[69] | Wang L, Wang Y, He R, Zhuang A, Wang X, Zeng J, Hou J G. A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance[J]. J. Am. Chem. Soc., 2013, 135: 1272-1275 |
[70] | Deng H, Grunder S, Cordova K E, Valente C, Furukawa H, Hmadeh M, Gándara H, Whalley A C, Liu Z, Asahina S, Kazumori H, O’Keeffe M, Terasaki O, Stoddart J F, Yaghi O M. Large-pore apertures in a series of metal-organic frameworks[J]. Science, 2012, 336: 1018-1023 |
[71] | Chen Y, Lykourinou V, Vetromile C, Hoang T, Ming L J, Larsen R W, Ma S. How can proteins enter the interior of a MOF? Investigation of cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows[J]. J. Am. Chem. Soc., 2012, 134: 13188-13191 |
[72] | Lykourinou V, Chen Y, Wang X S, Meng L, Hoang T, Ming L J, Musselman R L, Ma S. Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@mesoMOF: a new platform for enzymatic catalysis[J]. J. Am. Chem. Soc., 2011, 133: 10382-10385 |
[73] | Zhang Y, Dai Y, Hou M, Li T, Ge J, Liu Z. Chemo-enzymatic synthesis of valrubicin using Pluronic conjugated lipase with temperature responsiveness in organic media[J]. RSC Adv., 2013, 3: 22963-22966 |
[1] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[2] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[3] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[4] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[5] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[6] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[7] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[8] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[9] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[10] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[11] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[12] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[13] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[14] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[15] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||