化工学报 ›› 2011, Vol. 62 ›› Issue (S1): 97-102.

• 流体力学与传递现象 • 上一篇    下一篇

湿空气超音速凝结特性

蒋文明,刘中良,刘晓丽,李国森,刘吉东   

  1. 中国石油大学(华东)储运与建筑工程学院,山东 青岛 266555;北京工业大学环境与能源工程学院, 北京 100124;西安长庆科技工程有限责任公司,陕西 西安710021;胜利油田分公司油气集输总厂,山东 东营 257000
  • 出版日期:2011-07-03 发布日期:2011-07-03

  • Online:2011-07-03 Published:2011-07-03

摘要:

在实验室内搭建了湿空气超音速凝结实验系统,首先进行了稳定性实验,发现实验系统至少需要运行10 h后才能达到稳定状态。随后利用实验系统对湿空气在Laval喷管内的超音速凝结过程进行了实验测试,发现当喷管入口为0.46 MPa时,液滴粒径沿轴向位置变化很小,约为0.85 μm;液滴数量和液相质量分数基本维持在3.0×1012 个·kg-18.0×10-4左右,并稍有上升趋势。最后建立了湿空气超音速均相和非均相凝结数学模型,并在实验条件下进行了模拟计算,发现湿空气在Laval

关键词: 湿空气, 超音速, 凝结, 喷管

Abstract:

An experimental system was set up for wet air supersonic condensation research.The stability measurement tests were taken.The results showed that the experimental system at least needed 10 h to achieve stabilization.The supersonic condensation process of wet air in Laval nozzle was tested.The results showed that the droplet diameter is nearly 0.85 μm along the axial without obvious fluctuation, and the droplet number is nearly 3.0×1012#·kg-1, and the liquid fraction is neatly 8.0×10-4  when the inlet pressure of the nozzle was 0.46 MPa.Mathematical models of wet air were set up to simulate the process of homogeneous and heterogeneous condensation in Laval nozzle.The results showed that the experimental results were in agreement with heterogeneous condensation simulation results which validated the heterogeneous model.

Key words: 湿空气, 超音速, 凝结, 喷管