化工学报 ›› 2016, Vol. 67 ›› Issue (1): 176-190.DOI: 10.11949/j.issn.0438-1157.20151007
姜娜1,2, 樊江莉1, 杨洪宝1, 彭孝军1
收稿日期:
2015-06-29
修回日期:
2015-07-31
出版日期:
2016-01-05
发布日期:
2016-01-05
通讯作者:
彭孝军
基金资助:
国家自然科学基金项目(21136002,21422601,21421005);国家重点基础研究发展计划项目(2013CB733702);教育部新世纪优秀人才支持计划(NCET-12-0080);辽宁省自然科学基金项目(2013020115)。
JIANG Na1,2, FAN Jiangli1, YANG Hongbao1, PENG Xiaojun1
Received:
2015-06-29
Revised:
2015-07-31
Online:
2016-01-05
Published:
2016-01-05
Supported by:
supported by the National Natural Science Foundation of China (21136002, 21422601, 21421005), the National Basic Research Program of China (2013CB733702), Ministry of Education (NCET-12-0080) and the Natural Science Foundation of Liaoning Province (2013020115).
摘要:
细胞器的研究一直是认识细胞结构和功能的重要手段。线粒体是细胞的能量工厂,参与众多的新陈代谢过程,许多病理学过程均与它相关,是一种重要的细胞器,一直以来都是研究的热点。定位于线粒体的荧光探针主要分为3大类,本文重点介绍并讨论近10年基于带有正电荷的荧光团或者在荧光团中引入三苯基膦等定位基团实现对线粒体染色荧光探针的研究进展。
中图分类号:
姜娜, 樊江莉, 杨洪宝, 彭孝军. 线粒体荧光探针最新研究进展[J]. 化工学报, 2016, 67(1): 176-190.
JIANG Na, FAN Jiangli, YANG Hongbao, PENG Xiaojun. Progress in research of mitochondrial fluorescence probes[J]. CIESC Journal, 2016, 67(1): 176-190.
[1] | ZHANG S, WU T, FAN J L, et al. A BODIPY-based fluorescent probe for mitochondria in living cells, with low cytotoxicity and high photostability [J]. Organic & Biomolecular Chemistry, 2013, 11(4): 555-558. |
[2] | ZHANG C, LIU T, SU Y P, et al. A near-infrared fluorescent heptamethine indocyanine probe with preferential tumor accumulation for in vivo imaging [J]. Biomaterials, 2010, 31(25): 6612-6617. |
[3] | HAN J, HAN M S, TUNG C. A non-toxic fluorogenic probe for mitochondria labeling [J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2013, 1830(11): 5130-5135. |
[4] | KAWAZOE Y, SHIMOGAWA H, SATO A, et al. A mitochondrial surface-specific fluorescent probe activated by bioconversion [J]. Angewandte Chemie International Edition, 2011, 50(24): 5478-5481. |
[5] | MIAO F, ZHANG W J, SUN Y M, et al. Novel fluorescent probes for highly selective two-photon imaging of mitochondria in living cells [J]. Biosensors and Bioelectronics, 2014, 55: 423-429. |
[6] | DIVYA V, SANKAR V, RAGHU K G, et al. A mitochondria-specific visible-light sensitized europium β-diketonate complex with red emission [J]. Dalton Transactions, 2013, 42(34): 12317-12323. |
[7] | SENSI S L, TON-THAT D, WEISS J H, et al. A new mitochondrial fluorescent zinc sensor [J]. Cell Calcium, 2003, 34(3): 281-284. |
[8] | SREENATH K, ALLEN J R, DAVIDSON M W, et al. A FRET-based indicator for imaging mitochondrial zinc ions [J]. Chemical Communications, 2011, 47: 11730-11732. |
[9] | YOUNGÁBAEK N, HOÁHEO C, SUÁLIM C, et al. A highly sensitive two-photon fluorescent probe for mitochondrial zinc ions in living tissue [J]. Chemical Communications, 2012, 48(38): 4546-4548. |
[10] | CHEN W D, GONG W T, YE Z Q, et al. FRET-based ratiometric fluorescent probes for selective Fe3+ sensing and their applications in mitochondria [J]. Dalton Transactions, 2013, 42(28): 10093-10096. |
[11] | SHVARTSMAN M, FIBACH E, CABANTCHIK Z. Transferrin-iron routing to the cytosol and mitochondria as studied by live and real-time fluorescence [J]. Biochem. J., 2010, 429: 185-193. |
[12] | SHVARTSMAN M, CABANTCHIK Z I. Intracellular iron trafficking: role of cytosolic ligands [J]. Biometals, 2012, 25(4): 711-723. |
[13] | MA Y M, ABBATE V, HIDER R C. Iron-sensitive fluorescent probes: monitoring intracellular iron pools [J]. Metallomics, 2015, 7(2): 212-222. |
[14] | CABANTCHIK Z I. Labile iron in cells and body fluids: physiology, pathology, and pharmacology [J]. Frontiers in Pharmacology, 2014, 5: 45. doi: 10.3389/fphar. 2014. 00045. |
[15] | TAKI M, AKAOKA K, MITSUI K, et al. A mitochondria-targeted turn-on fluorescent probe based on a rhodol platform for the detection of copper (Ⅰ) [J]. Organic & Biomolecular Chemistry, 2014, 12(27): 4999-5005. |
[16] | YUSOP R M, UNCITI-BROCETA A, JOHANSSON E M V, et al. Palladium-mediated intracellular chemistry [J]. Nature, 2011, 3(3): 239-243. |
[17] | LI H L, FAN J L, PENG X J. Colourimetric and fluorescent probes for the optical detection of palladium ions [J]. Chemical Society Reviews, 2013, 42(19): 7943-7962. |
[18] | ZHANG S L, FAN J L, ZHANG S Z, et al. Lighting up fluoride ions in cellular mitochondria using a highly selective and sensitive fluorescent probe [J]. Chemical Communications, 2014, 50(90): 14021-14024. |
[19] | ASHTON T D, JOLLIFFE K A, PFEFFER F M. Luminescent probes for the bioimaging of small anionic species in vitro and in vivo [J]. Chemical Society Reviews, 2015, 44: 4547-4595. |
[20] | CHEN X Q, TIAN X Z, SHIN I, et al. Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species [J]. Chemical Society Reviews, 2011, 40(9): 4783-4804. |
[21] | ALBERS A E, OKREGLAK V S, CHANG C J. A FRET-based approach to ratiometric fluorescence detection of hydrogen peroxide [J]. Journal of the American Chemical Society, 2006, 128(30): 9640-9641. |
[22] | KOIDE Y, URANO Y, KENMOKU S, et al. Design and synthesis of fluorescent probes for selective detection of highly reactive oxygen species in mitochondria of living cells [J]. Journal of the American Chemical Society, 2007, 129(34): 10324-10325. |
[23] | SHIOJI K, OYAMA Y, OKUMA K, et al. Synthesis and properties of fluorescence probe for detection of peroxides in mitochondria [J]. Bioorganic & Medicinal Chemistry Letters, 2010, 20(13): 3911-3915. |
[24] | ROBINSON K M, JANES M S, PEHAR M, et al. Selective fluorescent imaging of superoxide in vivo using ethidium-based probes [J]. Proceedings of the National Academy of Sciences, 2006, 103(41): 15038-15043. |
[25] | HU Q L, GAO M, FENG G X, et al. Mitochondria-targeted cancer therapy using a light-up probe with aggregation-induced-emission characteristics [J]. Angewandte Chemie International Edition, 2014, 53(51): 14225-14229. |
[26] | CHENG G H, FAN J L, SUN W, et al. A highly specific BODIPY-based probe localized in mitochondria for HClO imaging [J]. Analyst, 2013, 138(20): 6091-6096. |
[27] | HOU J T, WU M Y, LI K, et al. Mitochondria-targeted colorimetric and fluorescent probes for hypochlorite and their applications for in vivo imaging [J]. Chemical Communications, 2014, 50(63): 8640-8643. |
[28] | ZHANG H X, LIU J, SUN Y Q, et al. A mitochondria-targetable fluorescent probe for peroxynitrite: fast response and high selectivity [J]. Chemical Communications, 2015, 51(28): 2721-2724. |
[29] | CHEN Y C, ZHU C C, YANG Z H, et al. A ratiometric fluorescent probe for rapid detection of hydrogen sulfide in mitochondria [J]. Angewandte Chemie, 2013, 125(6): 1732-1735. |
[30] | GUO Z Q, PARK S, YOON J, et al. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications [J]. Chemical Society Reviews, 2014, 43(1): 16-29. |
[31] | LEE M H, HAN J H, LEE J, et al. Mitochondrial thioredoxin-responding off-on fluorescent probe [J]. Journal of the American Chemical Society, 2012, 134(41): 17314-17319. |
[32] | LEE M H, JEON H M, HAN J H, et al. Toward a chemical marker for inflammatory disease: a fluorescent probe for membrane-localized thioredoxin [J]. Journal of the American Chemical Society, 2014, 136(23): 8430-8473. |
[33] | LEE M H, KIM J Y, HAN J H, et al. Direct fluorescence monitoring of the delivery and cellular uptake of a cancer-targeted RGD peptide-appended naphthalimide theragnostic prodrug [J]. Journal of the American Chemical Society, 2012, 134(30): 12668-12674. |
[34] | LEE M H, HAN J H, KWON P, et al. Hepatocyte-targeting single galactose-appended naphthalimide: a tool for intracellular thiol imaging in vivo [J]. Journal of the American Chemical Society, 2012, 134(2): 1316-1322. |
[35] | LIM S, HONG K, KIM D I, et al. Tunable heptamethine-azo probe conjugate as an NIR fluorescent probe for the selective detection of mitochondrial glutathione over cysteine and homocysteine [J]. Journal of the American Chemical Society, 2014, 136(19): 7018-7025. |
[36] | HORINOUCHI T, NAKAGAWA H, SUZUKI T, et al. Photoinduced nitric oxide release from a nitrobenzene derivative in mitochondria [J]. Chemistry-A European Journal, 2011, 17(17): 4809-4813. |
[37] | HORINOUCHI T, NAKAGAWA H, SUZUKI T, et al. A novel mitochondria-localizing nitrobenzene derivative as a donor for photo-uncaging of nitric oxide [J]. Bioorganic & Medicinal Chemistry Letters, 2011, 21(7): 2000-2002. |
[38] | LEE M H, PARK N, YI C, et al. Mitochondria-immobilized pH-sensitive off-on fluorescent probe [J]. Journal of the American Chemical Society, 2014, 136(40): 14136-14142. |
[39] | LI P, XIAO H B, CHENG Y F, et al. A near-infrared-emitting fluorescent probe for monitoring mitochondrial pH [J]. Chem. Commun., 2014, 50(54): 7184-7187. |
[40] | WU M Y, LI K, LIU Y H, et al. Mitochondria-targeted ratiometric fluorescent probe for real time monitoring of pH in living cells [J]. Biomaterials, 2015, 53: 669-678. |
[41] | STUTTS M J, CANESSA C M, OLSEN J C, et al. CFTR as a cAMP-dependent regulator of sodium channels [J]. Science, 1995, 269(5225): 847-850. |
[42] | LUBY-PHELPS K. Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area [J]. International Review of Cytology, 1999, 192: 189-221. |
[43] | ALEARDI A M, BENARD G, AUGEREAU O, et al. Gradual alteration of mitochondrial structure and function by β-amyloids: importance of membrane viscosity changes, energy deprivation, reactive oxygen species production, and cytochrome c release [J]. Journal of Bioenergetics and Biomembranes, 2005, 37(4): 207-225. |
[44] | YANG Z Q, HE Y X, LEE J H, et al. A self-calibrating bipartite viscosity sensor for mitochondria [J]. Journal of the American Chemical Society, 2013, 135(24): 9181-9185. |
[45] | LIU F, WU T, CAO J F, et al. Ratiometric detection of viscosity using a two-photon fluorescent sensor [J]. Chemistry-A European Journal, 2013, 19(5): 1548-1553. |
[46] | JIANG N, FAN J L, ZHANG S, et al. Dual mode monitoring probe for mitochondrial viscosity in single cell [J]. Sensors and Actuators B: Chemical, 2014, 190: 685-693. |
[47] | ZHUANG Y D, CHIANG P Y, WANG C W, et al. Environment-sensitive fluorescent turn-on probes targeting hydrophobic ligand-binding domains for selective protein detection [J]. Angewandte Chemie International Edition, 2013, 52(31): 8124-8128. |
[48] | BERNS M W, KRASIEVA T, SUN C, et al. A polarity dependent fluorescence “switch” in live cells [J]. Journal of Photochemistry and Photobiology B: Biology, 2004, 75(1): 51-56. |
[49] | HUANG L, TAM-CHANG S. N-(2-(N',N'-diethylamino) ethyl) perylene-3, 4-dicarboximide and its quaternized derivatives as fluorescence probes of acid, temperature, and solvent polarity [J]. Journal of Fluorescence, 2011, 21(1): 213-222. |
[50] | SZCZUPAK B, RYDER A G, TOGASHI D M, et al. Polarity assessment of thermoresponsive poly (NIPAM-co-NtBA) copolymer films using fluorescence methods [J]. Journal of Fluorescence, 2010, 20(3): 719-731. |
[51] | SUPPAN P. Solvent effects on the energy of electronic transitions: experimental observations and applications to structural problems of excited molecules [J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1968: 3125-3133. |
[52] | WANG L, XIAO Y, TIAN W M, et al. Activatable rotor for quantifying lysosomal viscosity in living cells [J]. Journal of the American Chemical Society, 2013, 135(8): 2903-2906. |
[53] | KUIMOVA M K, BALAZ M, ANDERSON H L, et al. Intramolecular rotation in a porphyrin dimer controls singlet oxygen production [J]. Journal of the American Chemical Society, 2009, 131(23): 7948-7949. |
[54] | KOIDE Y, URANO Y, KENMOKU S, et al. Design and synthesis of fluorescent probes for selective detection of highly reactive oxygen species in mitochondria of living cells [J]. Journal of the American Chemical Society, 2007, 129(34): 10324-10325. |
[55] | CHALMERS S, CALDWELL S T, QUIN C, et al. Selective uncoupling of individual mitochondria within a cell using a mitochondria-targeted photoactivated protonophore [J]. Journal of the American Chemical Society, 2011, 134(2): 758-761. |
[56] | LANDES T, MARTINOU J. Mitochondrial outer membrane permeabilization during apoptosis: the role of mitochondrial fission [J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2011, 1813(4): 540-545. |
[57] | YOUSIF L F, STEWART K M, KELLEY S O. Targeting mitochondria with organelle-specific compounds: strategies and applications [J]. ChemBioChem, 2009, 10(12): 1939-1950. |
[58] | MUSRATI R A, KOLLAROVA M, MERNIK N, et al. Malate dehydrogenase: distribution, function and properties [J]. General Physiology and Biophysics, 1998, 17: 193-210. |
[59] | JIANG N, FAN J L, XU F, et al. Ratiometric fluorescence imaging of cellular polarity: decrease in mitochondrial polarity in cancer cells [J]. Angewandte Chemie International Edition, 2015, 54(8): 2510-2514. |
[1] | 金伟其, 吴月荣, 王霞, 李力, 裘溯, 袁盼, 王铭赫. 化工园区工业气体泄漏气云红外成像检测技术与国产化装备进展[J]. 化工学报, 2023, 74(S1): 32-44. |
[2] | 张全碧, 羊依金, 郭旭晶. 芬顿氧化法对利福平制药废水中溶解性有机物的催化降解[J]. 化工学报, 2023, 74(5): 2217-2227. |
[3] | 李彩风, 王晓, 李岗建, 林军章, 汪卫东, 束青林, 曹嫣镔, 肖盟. 嗜烃乳化菌SL-1与内源菌协同驱油的菌群作用关系研究[J]. 化工学报, 2022, 73(9): 4095-4102. |
[4] | 解文潇, 贾胜坤, 张会书, 罗祎青, 袁希钢. 受限空间内浮升气泡与液体间传质行为实验研究[J]. 化工学报, 2022, 73(7): 2902-2911. |
[5] | 孙敏, 贾辉, 秦卿雯, 王琦, 郭子楠, 罗艳茹, 王捷. 电阻抗成像原位在线监测超滤膜污染行为研究[J]. 化工学报, 2022, 73(4): 1754-1762. |
[6] | 黄笑乐, 杨甫, 韩磊, 宁星, 李瑞宇, 董凌霄, 曹虎生, 邓磊, 车得福. 富油煤(长焰煤)孔隙结构三维表征及渗流模拟[J]. 化工学报, 2022, 73(11): 5078-5087. |
[7] | 侯旺君, 闫翎鹏, 曹哲勇, 郑静霞, 杨永珍. 煤基零维纳米碳材料的合成、性能及其在能源转换和存储应用中的研究进展[J]. 化工学报, 2022, 73(11): 4791-4813. |
[8] | 侯晓松, 刘晨星, 任爱玲, 郭斌, 郭渊明. 超声雾化/表面活性剂强化吸收耦合生物洗涤净化甲苯废气[J]. 化工学报, 2022, 73(10): 4692-4706. |
[9] | 戴军涛, 刘莉, 刘帅, 顾汉洋, 王科. 基于丝网探针的螺旋管内气液两相流气泡行为研究[J]. 化工学报, 2022, 73(10): 4377-4388. |
[10] | 宋伟, 王金辉, 胡贵鹏, 陈修来, 刘立明, 吴静. 多酶级联催化合成(R)-β-酪氨酸[J]. 化工学报, 2022, 73(1): 352-361. |
[11] | 王芳,贾胜坤,张会书,袁希钢,余国琮. 基于实验数据的湍流扩散POD模态分析[J]. 化工学报, 2021, 72(9): 4531-4543. |
[12] | 王腾, 毕勤成, 桂淼, 刘朝晖. 弹状流液弹区含气率分布的试验研究[J]. 化工学报, 2021, 72(9): 4584-4593. |
[13] | 张海, 徐英, 张涛, 孙涔崴, 魏传顺, 戴志向. 丝网传感器的气液两相流可视化测量特性研究[J]. 化工学报, 2021, 72(9): 4573-4583. |
[14] | 刘曙光, 钟文琪, 陈曦. 基于XCT的气固流化床布风板射流特征研究[J]. 化工学报, 2021, 72(9): 4553-4563. |
[15] | 郑雷铭, 王明, 陈思, 郑淞生, 王兆林, 陈源, 李钷. 近紫外激发单一基质荧光粉的研究进展[J]. 化工学报, 2021, 72(7): 3551-3561. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||