化工学报 ›› 2023, Vol. 74 ›› Issue (5): 2217-2227.DOI: 10.11949/0438-1157.20230044
收稿日期:
2023-01-18
修回日期:
2023-03-28
出版日期:
2023-05-05
发布日期:
2023-06-29
通讯作者:
羊依金
作者简介:
张全碧(1998—),女,硕士研究生,zhangquanbi666@163.com
基金资助:
Quanbi ZHANG(), Yijin YANG(), Xujing GUO
Received:
2023-01-18
Revised:
2023-03-28
Online:
2023-05-05
Published:
2023-06-29
Contact:
Yijin YANG
摘要:
采用芬顿技术(Fe2+/H2O2)处理实际抗生素(利福平)废水,探究溶液初始pH、反应时间、亚铁离子浓度和氧化剂浓度对降解效果的影响。采用同步荧光光谱结合二维相关光谱分析利福平废水中溶解性有机物(DOM)荧光组分的变化特性。结果表明,当pH为3、H2O2浓度为1.4 ml·L-1、硫酸亚铁浓度为0.5 g·L-1时反应180 min,废水COD降解率可达到73.29%,TOC降解率达到82.51%。利福平制药废水中类蛋白(PLF)、类富里酸(FLF)、类腐殖酸(HLF)和陆源类腐殖质(THLF)降解率分别可达到93%、90%、83%和65%左右。二维相关光谱分析表明,315 nm处类富里酸物质对Fenton氧化更为敏感,且能够优先被降解。BMG动力学模型对实验数据拟合最佳,其相关系数在0.99以上,且Peak315的初始反应速率最快。自由基猝灭实验和EPR实验证实了反应过程中产生的·OH为氧化反应的主要活性物质。
中图分类号:
张全碧, 羊依金, 郭旭晶. 芬顿氧化法对利福平制药废水中溶解性有机物的催化降解[J]. 化工学报, 2023, 74(5): 2217-2227.
Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process[J]. CIESC Journal, 2023, 74(5): 2217-2227.
名称 | 利福平/ (mg·L-1) | pH | CODCr/ (mg·L-1) | BOD5/ (mg·L-1) | SS/ (mg·L-1) | 色度 |
---|---|---|---|---|---|---|
利福平废水 | 10~20 | 6.8 | 90.02 | 21.55 | 7.63 | 10倍 |
表1 水质指标参数
Table 1 Water quality parameters
名称 | 利福平/ (mg·L-1) | pH | CODCr/ (mg·L-1) | BOD5/ (mg·L-1) | SS/ (mg·L-1) | 色度 |
---|---|---|---|---|---|---|
利福平废水 | 10~20 | 6.8 | 90.02 | 21.55 | 7.63 | 10倍 |
影响因素 | 实验设计 |
---|---|
反应时间/min | 10、20、30、60、120、180、240、300 |
pH | 1、2、3、4、5、6、7 |
硫酸亚铁浓度/(g·L-1) | 0.2、0.3、0.4、0.5、0.6 |
H2O2浓度/(ml·L-1) | 0.8、1.1、1.4、1.7、2.0 |
表2 降解实验设计
Table 2 Degradation experimental design
影响因素 | 实验设计 |
---|---|
反应时间/min | 10、20、30、60、120、180、240、300 |
pH | 1、2、3、4、5、6、7 |
硫酸亚铁浓度/(g·L-1) | 0.2、0.3、0.4、0.5、0.6 |
H2O2浓度/(ml·L-1) | 0.8、1.1、1.4、1.7、2.0 |
图5 同步相关谱图和异步相关谱图(白色为正,灰色为负)
Fig.5 Synchronous map and asynchronous map (the white regions represent positive correlations, whereas the grey regions represent negative correlations)
相关系数 | Peak275 | Peak315 | Peak365 | Peak400 | Peak460 | Peak473 | Peak500 | Peak567 |
---|---|---|---|---|---|---|---|---|
R2 | 0.1967 | 0.4288 | 0.9084 | 0.9779 | 0.9111 | 0.8781 | 0.7801 | 0.5312 |
表3 各峰荧光强度与COD的相关关系
Table 3 Correlation between fluorescence intensity of each peak and COD
相关系数 | Peak275 | Peak315 | Peak365 | Peak400 | Peak460 | Peak473 | Peak500 | Peak567 |
---|---|---|---|---|---|---|---|---|
R2 | 0.1967 | 0.4288 | 0.9084 | 0.9779 | 0.9111 | 0.8781 | 0.7801 | 0.5312 |
各峰 | 1级 | 2级 | BMG | ||||
---|---|---|---|---|---|---|---|
k1/min-1 | R2 | k 2/(10-6min-1) | R2 | 1/b | 1/m | R2 | |
Peak275 | 0.0047 | 0.1265 | 6.8503 | 0.2509 | 0.9095 | 1.5805 | 0.9991 |
Peak315 | 0.0061 | 0.2880 | 2.5344 | 0.5008 | 0.9500 | 1.7687 | 0.9993 |
Peak365 | 0.0052 | 0.3974 | 2.0935 | 0.6367 | 0.8925 | 0.5964 | 0.9996 |
Peak400 | 0.0059 | 0.3954 | 1.6718 | 0.6847 | 0.9233 | 0.7703 | 0.9999 |
Peak460 | 0.0056 | 0.3576 | 1.5457 | 0.6429 | 0.9217 | 0.8450 | 0.9999 |
Peak473 | 0.0052 | 0.2348 | 2.7397 | 0.5437 | 0.9095 | 0.8013 | 0.9999 |
Peak500 | 0.0038 | 0.3283 | 0.8610 | 0.5207 | 0.8389 | 0.5456 | 0.9999 |
Peak567 | 0.0026 | 0.4143 | 0.7464 | 0.5401 | 0.6637 | 0.1770 | 0.9992 |
表4 荧光物质降解动力学拟合
Table 4 The degradation kinetics of fluorescent substance
各峰 | 1级 | 2级 | BMG | ||||
---|---|---|---|---|---|---|---|
k1/min-1 | R2 | k 2/(10-6min-1) | R2 | 1/b | 1/m | R2 | |
Peak275 | 0.0047 | 0.1265 | 6.8503 | 0.2509 | 0.9095 | 1.5805 | 0.9991 |
Peak315 | 0.0061 | 0.2880 | 2.5344 | 0.5008 | 0.9500 | 1.7687 | 0.9993 |
Peak365 | 0.0052 | 0.3974 | 2.0935 | 0.6367 | 0.8925 | 0.5964 | 0.9996 |
Peak400 | 0.0059 | 0.3954 | 1.6718 | 0.6847 | 0.9233 | 0.7703 | 0.9999 |
Peak460 | 0.0056 | 0.3576 | 1.5457 | 0.6429 | 0.9217 | 0.8450 | 0.9999 |
Peak473 | 0.0052 | 0.2348 | 2.7397 | 0.5437 | 0.9095 | 0.8013 | 0.9999 |
Peak500 | 0.0038 | 0.3283 | 0.8610 | 0.5207 | 0.8389 | 0.5456 | 0.9999 |
Peak567 | 0.0026 | 0.4143 | 0.7464 | 0.5401 | 0.6637 | 0.1770 | 0.9992 |
1 | 杨娜. 生化处理利福平抗生素制药废水的实验研究[D]. 沈阳: 东北大学, 2009. |
Yang N. Treatment of experimental study on biochemical rifampicin antibiotic wastewater[D]. Shenyang: Northeastern University, 2009. | |
2 | Shafaati M, Miralinaghi M, Shirazi R H S M, et al. The use of chitosan/Fe3O4 grafted graphene oxide for effective adsorption of rifampicin from water samples[J]. Research on Chemical Intermediates, 2020, 46(12): 5231-5254. |
3 | Rodrigues-Silva F, Masceno G P, Panicio P P, et al. Removal of micropollutants by UASB reactor and post-treatment by Fenton and photo-Fenton: matrix effect and toxicity responses[J]. Environmental Research, 2022, 212: 113396. |
4 | 迟春娟, 付月彪, 张嗣炯. 利福平废水的絮凝和生化处理研究[J]. 环境污染治理技术与设备, 2000(2): 17-20. |
Chi C J, Fu Y B, Zhang S J. Research of flocculant and biochemical treatment of rifampin wastewater[J]. Technigues and Equipments for Environmental Pollution Control, 2000(2): 17-20. | |
5 | Kais H, Yeddou Mezenner N, Trari M. Biosorption of rifampicin from wastewater using cocoa shells product[J]. Separation Science and Technology, 2020, 55(11): 1984-1993. |
6 | Cai W L, Weng X L, Chen Z L. Highly efficient removal of antibiotic rifampicin from aqueous solution using green synthesis of recyclable nano-Fe3O4 [J]. Environmental Pollution, 2019, 247: 839-846. |
7 | 许征宇, 陈洁, 余进. 高级氧化技术在污水处理中的应用及研究进展[J]. 中国资源综合利用, 2020, 38(10): 112-114. |
Xu Z Y, Chen J, Yu J. Application and research progress of advanced oxidation technology in sewage treatment[J]. China Resources Comprehensive Utilization, 2020, 38(10): 112-114. | |
8 | Dang Thi Ngoc T, Thi H N, Nguyen Duc D, et al. Preparation and photocatalytic characterization of modified nano TiO2/Nd/rice husk ash material for rifampicin removal in aqueous solution[J]. Journal of Analytical Methods in Chemistry, 2022, 2022: 2084906. |
9 | Duarte F D S, Melo A L M D S, Ferro A B, et al. Magnetic zinc oxide/manganese ferrite composite for photodegradation of the antibiotic rifampicin[J]. Materials, 2022, 15(22): 8185. |
10 | Ebratkhahan M, Zarei M, Zaier Akpinar I, et al. One-pot synthesis of graphene hydrogel/M (M: Cu, Co, Ni) nanocomposites as cathodes for electrochemical removal of rifampicin from polluted water[J]. Environmental Research, 2022, 214: 113789. |
11 | Liu L J, Xu Q Y, Owens G, et al. Fenton-oxidation of rifampicin via a green synthesized rGO@nFe/Pd nanocomposite[J]. Journal of Hazardous Materials, 2021, 402: 123544. |
12 | da Silva Duarte J L, Solano A M S, Arguelho M L P M, et al. Evaluation of treatment of effluents contaminated with rifampicin by Fenton, electrochemical and associated processes[J]. Journal of Water Process Engineering, 2018, 22: 250-257. |
13 | Yu H B, Song Y H, Tu X, et al. Assessing removal efficiency of dissolved organic matter in wastewater treatment using fluorescence excitation emission matrices with parallel factor analysis and second derivative synchronous fluorescence[J]. Bioresource Technology, 2013, 144: 595-601. |
14 | 于本心, 张广彩, 孙迎雪. 应用二维相关同步荧光光谱研究市政污水中溶解性有机物组分[J]. 环境污染与防治, 2021, 43(6): 704-707. |
Yu B X, Zhang G C, Sun Y X. Applying tow-dimensional correlation synchronous fluorescence spectroscopy to study DOM fractions in municipal sewage[J]. Environmental Pollution & Control, 2021, 43(6): 704-707. | |
15 | 中华人民共和国环境保护部. 水质 化学需氧量的测定 重铬酸盐法: [S]. 北京: 中国环境出版社, 2017. |
Ministry of Environmental Protection of the People’s Republic of China. Water quality—Determination of the chemical oxygen demand—Dichromate method: [S]. Beijing: China Environmental Science Press, 2017. | |
16 | 国家环境保护总局. 水质 铁的测定 邻菲啰啉分光光度法(试行): [S]. 北京: 中国环境科学出版社, 2007. |
State Environmental Protection Administration. Water quality—Determination of iron—Phenanthroline spectrophotometry: [S]. Beijing: China Environmental Science Press, 2007. | |
17 | 黄燕, 杨永远, 杨湘智, 等. 钛盐光度法测定Fenton体系中过氧化氢浓度的试验研究[J]. 化工管理, 2020(15): 22-23. |
Huang Y, Yang Y Y, Yang X Z, et al. Experimental study on determination of hydrogen peroxide concentration in Fenton system by titanium salt spectrophotometry[J]. Chemical Enterprise Management, 2020(15): 22-23. | |
18 | Tunç S, Duman O, Gürkan T. Monitoring the decolorization of acid orange 8 and acid red 44 from aqueous solution using Fenton’s reagents by online spectrophotometric method: effect of operation parameters and kinetic study[J]. Industrial & Engineering Chemistry Research, 2013, 52(4): 1414-1425. |
19 | 吴锡峰, 杨恺. 芬顿氧化法对抗生素废水深度处理的实验研究[J]. 海峡科学, 2017(1): 19-21. |
Wu X F, Yang K. Experimental study on advanced treatment of antibiotic wastewater by Fenton oxidation[J]. Straits Science, 2017(1): 19-21. | |
20 | 赵云, 王丽萍, 何士龙, 等. Fenton试剂氧化对硝基酚中氧化还原电位的变化规律[J]. 环境污染与防治, 2011, 33(4): 58-61, 65. |
Zhao Y, Wang L P, He S L, et al. Variation of ORP during p-nitrophenol degradation by Fenton oxidation process[J]. Environmental Pollution & Control, 2011, 33(4): 58-61, 65. | |
21 | 徐祺琪, 陈维芳, 沈晓慧, 等. Fenton高级氧化技术去除水中有机污染物2-MIB的影响因素研究[J]. 水资源与水工程学报, 2014, 25(2): 158-161. |
Xu Q Q, Chen W F, Shen X H, et al. Study on factors affecting removal of organic pollutant 2-MIB in water by using Fenton advanced oxidation process[J]. Journal of Water Resources and Water Engineering, 2014, 25(2): 158-161. | |
22 | 郭旭晶, 彭涛, 王月, 等. 湖泊沉积物孔隙水溶解性有机质组成与光谱特性[J]. 环境化学, 2013, 32(1): 79-84. |
Guo X J, Peng T, Wang Y, et al. Study on the composition and spectral properties of dissolved organic matter extracted from lake sediment pore water in lake[J]. Environmental Chemistry, 2013, 32(1): 79-84. | |
23 | Chen W, Habibul N, Liu X Y, et al. FTIR and synchronous fluorescence heterospectral two-dimensional correlation analyses on the binding characteristics of copper onto dissolved organic matter[J]. Environmental Science & Technology, 2015, 49(4): 2052-2058. |
24 | 吴正龙. 腐殖质荧光及表面增强拉曼散射光谱分析[J]. 实验室研究与探索, 2011, 30(11): 227-230. |
Wu Z L. Fluorescence and SERS spectral analyses of humic substances[J]. Research and Exploration in Laboratory, 2011, 30(11): 227-230. | |
25 | Hur J, Jung K Y, Jung Y M. Characterization of spectral responses of humic substances upon UV irradiation using two-dimensional correlation spectroscopy[J]. Water Research, 2011, 45(9): 2965-2974. |
26 | Weishaar J L, Aiken G R, Bergamaschi B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 2003, 37(20): 4702-4708. |
27 | 宋凡浩, 栗婷婷, 张进, 等. 二维相关荧光光谱探究土壤富里酸亚组分的质子键合多相性[J]. 光谱学与光谱分析, 2019, 39(10): 3071-3077. |
Song F H, Li T T, Zhang J, et al. Proton binding heterogeneity in soil fulvic acid sub-fractions using two-dimensional correlation fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2019, 39(10): 3071-3077. | |
28 | Noda I. Close-up view on the inner workings of two-dimensional correlation spectroscopy[J]. Vibrational Spectroscopy, 2012, 60: 146-153. |
29 | An S F, Zhang G H, Wang T W, et al. High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes[J]. ACS Nano, 2018, 12(9): 9441-9450. |
[1] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[4] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[5] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[6] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[7] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[8] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[9] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[10] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[11] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[12] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[13] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[14] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[15] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||