化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4573-4583.DOI: 10.11949/0438-1157.20210098
张海1,2(),徐英1,2(
),张涛1,2,孙涔崴1,2,魏传顺1,2,戴志向3
收稿日期:
2021-01-15
修回日期:
2021-04-30
出版日期:
2021-09-05
发布日期:
2021-09-05
通讯作者:
徐英
作者简介:
张海(1995—),男,硕士研究生,基金资助:
Hai ZHANG1,2(),Ying XU1,2(
),Tao ZHANG1,2,Cenwei SUN1,2,Chuanshun WEI1,2,Zhixiang DAI3
Received:
2021-01-15
Revised:
2021-04-30
Online:
2021-09-05
Published:
2021-09-05
Contact:
Ying XU
摘要:
关于丝网传感器(WMS)可视化测量能力已有学者采用多种流体可视化技术进行了研究评估,数值仿真方法以其低成本、灵活多样优势受到了广泛关注,但瞬态流场-电场的WMS耦合仿真评估鲜有报道。针对空间分辨率3.125 mm,16×16电导型WMS,基于电场域中被测介质局部电导率与流体相含率的线性关系提出了流场-电场耦合方法。采用COMSOL实现了分层流、环状流和段塞流的气液两相流体仿真以及相应的耦合计算,结果表明WMS测量重构图、电流密度模值分布等信息与真实气液相分布严格对应,证明WMS具有出色的可视化测量能力和耦合方法的可行性。此外采集了不同液位高度静态分层流WMS实验数据,并与仿真数据进行分析对比,二者测量归一化值重构图与静态流体分布相吻合,表明了仿真模型的可靠性,以及测量值归一化处理能有效修正因WMS“边缘电场畸变”造成的边缘点测量值与流体分布之间的非线性映射关系,确保整个横截面上两者之间的一致线性映射。
中图分类号:
张海, 徐英, 张涛, 孙涔崴, 魏传顺, 戴志向. 丝网传感器的气液两相流可视化测量特性研究[J]. 化工学报, 2021, 72(9): 4573-4583.
Hai ZHANG, Ying XU, Tao ZHANG, Cenwei SUN, Chuanshun WEI, Zhixiang DAI. Investigation of visualized-measurement merits of wire mesh sensor for gas-liquid flow[J]. CIESC Journal, 2021, 72(9): 4573-4583.
流型 | 入口方式 | Vsl/(m·s-1) | Vsg/(m·s-1) | LVF/% |
---|---|---|---|---|
分层流 | 液相:竖直管 气相:水平管 | 0.16 | 2 | 7.41 |
0.5 | 1 | 30.00 | ||
1 | 1 | 50.00 | ||
1 | 0.3 | 76.92 | ||
环状流 | 液相:水平管 | 0.7 | 10 | 6.54 |
气相:竖直管 | 2 | 13 | 13.33 | |
段塞流 | 液相:水平管 气相:竖直管 | 1 | 16 | 5.88① |
表1 流体仿真流量点
Table 1 Air-water condition used in the simulations
流型 | 入口方式 | Vsl/(m·s-1) | Vsg/(m·s-1) | LVF/% |
---|---|---|---|---|
分层流 | 液相:竖直管 气相:水平管 | 0.16 | 2 | 7.41 |
0.5 | 1 | 30.00 | ||
1 | 1 | 50.00 | ||
1 | 0.3 | 76.92 | ||
环状流 | 液相:水平管 | 0.7 | 10 | 6.54 |
气相:竖直管 | 2 | 13 | 13.33 | |
段塞流 | 液相:水平管 气相:竖直管 | 1 | 16 | 5.88① |
图11 各液位高度静态分层流的实验与仿真WMS测量值成像图
Fig.11 Qualified comparison between visualized images based on experimental measurements and simulative values of static stratified flow with different liquid level using WMS
1 | 林松, 李良超, 王嘉骏, 等. 鼓泡塔中气泡尺寸分布和局部气含率研究[J]. 化学工程, 2008, 36(2): 21-24. |
Lin S, Li L C, Wang J J, et al. Study on bubble size distribution and local gas holdup in bubble column[J]. Chemical Engineering(China), 2008, 36(2): 21-24. | |
2 | 黄雄斌, 闫宪斌, 施力田, 等. 固液搅拌槽内液相速度的分布[J]. 化工学报, 2002, 53(7): 717-722. |
Huang X B, Yan X B, Shi L T, et al. Liquid velocity distributions in solid-liquid stirred vessels[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(7): 717-722. | |
3 | Li Z B, Wu Y X, Li D H. Gamma-ray attenuation technique for measuring void fraction in horizontal gas-liquid two-phase flow[J]. Nuclear Science and Techniques, 2007, 18(2): 73-76. |
4 | Fischer F, Hampel U. Ultra fast electron beam X-ray computed tomography for two-phase flow measurement[J]. Nuclear Engineering and Design, 2010, 240(9): 2254-2259. |
5 | Nezu I, Sanjou M. PIV and PTV measurements in hydro-sciences with focus on turbulent open-channel flows[J]. Journal of Hydro-environment Research, 2011, 5(4): 215-230. |
6 | Thorn R, Johansen G A, Hjertaker B T. Three-phase flow measurement in the petroleum industry[J]. Measurement Science and Technology, 2013, 24(1): 012003. |
7 | 谭超, 董峰. 多相流过程参数检测技术综述[J]. 自动化学报, 2013, 39(11): 1923-1932. |
Tan C, Dong F. Parameters measurement for multiphase flow process[J]. Acta Automatica Sinica, 2013, 39(11): 1923-1932. | |
8 | Prasser H M, Böttger A, Zschau J. A new electrode-mesh tomograph for gas-liquid flows[J]. Flow Measurement and Instrumentation, 1998, 9(2): 111-119. |
9 | Prasser H M, Scholz D, Zippe C. Bubble size measurement using wire-mesh sensors[J]. Flow Measurement and Instrumentation, 2001, 12(4): 299-312. |
10 | Prasser H M. Evolution of interfacial area concentration in a vertical air-water flow measured by wire-mesh sensors[J]. Nuclear Engineering and Design, 2007, 237(15/16/17): 1608-1617. |
11 | Joung O J, Kim Y H, Kim S P. Measurement of gas velocity distribution using a wire-mesh electrostatic probe[J]. Sensors and Actuators A: Physical, 2004, 112(2/3): 237-243. |
12 | Kesana N R, Parsi M, Vieira R E, et al. Visualization of gas-liquid multiphase pseudo-slug flow using wire-mesh sensor[J]. Journal of Natural Gas Science and Engineering, 2017, 46(1): 477-490. |
13 | Schleicher E, Besim Aydin T, Vieira R E, et al. Refined reconstruction of liquid-gas interface structures for stratified two-phase flow using wire-mesh sensor[J]. Flow Measurement and Instrumentation, 2015, 46: 230-239. |
14 | Richter S, Aritomi M, Prasser H M, et al. Approach towards spatial phase reconstruction in transient bubbly flow using a wire-mesh sensor[J]. International Journal of Heat and Mass Transfer, 2002, 45(5): 1063-1075. |
15 | Wangjiraniran W, Aritomi M, Kikura H, et al. A study of non-symmetric air water flow using wire mesh sensor[J]. Experimental Thermal and Fluid Science, 2005, 29(3): 315-322. |
16 | Prasser H M, Misawa M, Tiseanu I. Comparison between wire-mesh sensor and ultra-fast X-ray tomograph for an air-water flow in a vertical pipe[J]. Flow Measurement and Instrumentation, 2005, 16(2/3): 73-83. |
17 | Banowski M, Beyer M, Szalinski L, et al. Comparative study of ultrafast X-ray tomography and wire-mesh sensors for vertical gas-liquid pipe flows[J]. Flow Measurement and Instrumentation, 2017, 53: 95-106. |
18 | Manera A, Ozar B, Paranjape S, et al. Comparison between wire-mesh sensors and conductive needle-probes for measurements of two-phase flow parameters[J]. Nuclear Engineering and Design, 2009, 239(9): 1718-1724. |
19 | Damsohn M, Prasser H M. High-speed liquid film sensor for two-phase flows with high spatial resolution based on electrical conductance[J]. Flow Measurement and Instrumentation, 2009, 20(1): 1-14. |
20 | Zhang H W, Xiao Y, Gu H Y. Numerical investigations of the accuracy of conductivity wire-mesh sensors[J]. Nuclear Engineering and Design, 2019, 345: 148-156. |
21 | Ratkovich N, Majumder S K, Bentzen T R. Empirical correlations and CFD simulations of vertical two-phase gas-liquid (Newtonian and non-Newtonian) slug flow compared against experimental data of void fraction[J]. Chemical Engineering Research and Design, 2013, 91(6): 988-998. |
22 | Karami H, Torres C F, Parsi M, et al. CFD simulations of low liquid loading multiphase flow in horizontal pipelines[C] //Proceedings of ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting Collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. Chicago, Illinois, USA, 2014. |
23 | Horgue P, Augier F, Quintard M, et al. A suitable parametrization to simulate slug flows with the volume-of-fluid method[J]. Comptes Rendus Mécanique, 2012, 340(6): 411-419. |
24 | Prasser H M, Häfeli R. Signal response of wire-mesh sensors to an idealized bubbly flow[J]. Nuclear Engineering and Design, 2018, 336: 3-14. |
25 | Tompkins C, Prasser H M, Corradini M. Wire-mesh sensors: a review of methods and uncertainty in multiphase flows relative to other measurement techniques[J]. Nuclear Engineering and Design, 2018, 337: 205-220. |
26 | Parsi M, Kara M, Agrawal M, et al. CFD simulation of sand particle erosion under multiphase flow conditions[J]. Wear, 2017, 376/377: 1176-1184. |
27 | Hanratty T J. Physics of Gas-Liquid Flows[M]. Cambridge: Cambridge University Press, 2013. |
28 | Ye J M, Yang W Q, Wang C. Investigation of spatial resolution of electrical capacitance tomography based on coupling simulation[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(11): 8919-8929. |
29 | Ye J M, Wang H G, Li Y, et al. Coupling of fluid field and electrostatic field for electrical capacitance tomography[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(12): 3334-3353. |
30 | Grolman E, Fortuin J M H. Gas-liquid flow in slightly inclined pipes[J]. Chemical Engineering Science, 1997, 52(24): 4461-4471. |
[1] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[2] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[3] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[4] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[5] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[6] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
[7] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[8] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[9] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[10] | 白剑钊, 郭子轩, 王德武, 刘燕, 王若瑾, 唐猛, 张少峰. 摇摆对气液并流模式立体旋流筛板压降的影响研究[J]. 化工学报, 2023, 74(2): 707-720. |
[11] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[12] | 盛林, 昌宇, 邓建, 骆广生. 阶梯式T型微通道内有序气泡群的形成和流动特性研究[J]. 化工学报, 2023, 74(1): 416-427. |
[13] | 苏巧玲, 王军锋, 张伟, 詹水清, 吴天一. 低电导率工质中气泡的极化运动实验研究[J]. 化工学报, 2022, 73(9): 3861-3869. |
[14] | 张童, 杨扬, 叶丁丁, 陈蓉, 朱恂, 廖强. 催化剂分布对可渗透阳极微流体燃料电池性能特性影响的研究[J]. 化工学报, 2022, 73(9): 4156-4162. |
[15] | 李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 276
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 637
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||