化工学报 ›› 2016, Vol. 67 ›› Issue (4): 1601-1609.DOI: 10.11949/j.issn.0438-1157.20151308
邵高耸
收稿日期:
2015-08-17
修回日期:
2015-10-27
出版日期:
2016-04-05
发布日期:
2016-04-05
通讯作者:
邵高耸
基金资助:
河北省自然科学基金项目(B2014507016)。
SHAO Gaosong
Received:
2015-08-17
Revised:
2015-10-27
Online:
2016-04-05
Published:
2016-04-05
Supported by:
supported by the Natural Science Foundation of Hebei Province (B2014507016).
摘要:
以β-环糊精(β-CD)为结构导向剂,通过水热处理合成出具有分级结构的卷心菜叶形磷酸铈纳米纤维。通过X射线衍射、扫描电子显微镜、透射电子显微镜、傅里叶红外光谱和氮气吸附对材料进行表征。结果表明:合成的磷酸铈是六方和单斜晶型共存的混晶相;具有分级结构的"卷心菜叶"形貌,每个叶片是由宽约5 nm,长达几百到近千纳米不等的纳米纤维组成;推测生长机理为协同自组装控制的定向连接生长;磷酸铈纳米纤维材料作为催化剂在丙烷氧化脱氢制丙烯的催化反应中表现出优秀的催化活性和稳定性。
中图分类号:
邵高耸. 分级结构卷心菜叶形磷酸铈材料的制备及性能[J]. 化工学报, 2016, 67(4): 1601-1609.
SHAO Gaosong. Preparation and catalytic activity of hierarchical interlinked structure of cabbage-leaf-like cerium phosphate materials[J]. CIESC Journal, 2016, 67(4): 1601-1609.
[1] | RAJESH K, SIVAKUMAR B, PILLAR P K, et al. Synthesis of nanocrystalline lanthanum phosphate for low temperature densification to monzite cetamics[J]. Materials Letters, 2004, 58 (11): 1687-1791. |
[2] | LI Q, YAM V W W. Redox luminescence switch based on energy transfer in CePO4: Tb3+ nanowires[J]. Angew. Chem. Int. Ed., 2007, 46 (19): 3486-3489. |
[3] | ZHU L, LIU X M, LIU X D, et al. Facile sonochemical synthesis of CePO4: Tb/LaPO4 core/shell nanorods with highly improved photoluminescent properties[J]. Nanotechnology, 2006, 17 (16): 4217-4222. |
[4] | DEZFULI A S, GANJALI M R, NOROUZI P. Facile sonochemical synthesis and morphology control of CePO4 nanostructures via an oriented attachment mechanism: application as luminescent probe for selective sensing of Pb2+ ion in aqueous solution[J]. Materials Science and Engineering C, 2014, 42: 774-781. |
[5] | YANG Z, JI C. Interface mechanism of a rapid and mild aqueous-organic method to prepare CePO4 nanostructures[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2014, 444: 246-251. |
[6] | RAMÍREZ D P, DOMÍNGUEZ-CRESPO, TORRES-HUERTA A M, et al. Microwave-assisted hydrothermal synthesis of CePO4 nanostructures: correlation between the structural and optical properties[J]. Journal of Alloys and Compounds, 2015, 643: s209-s218. |
[7] | BAO J R, ZHU X W, LIU Y, et al. N,N-Dimethylformamide-induced synthesis and photoluminescence of CePO4 and Ce0.95PO4:Tb0.05 with sphere-like nanostructures[J]. Materials Letters, 2014,124: 97-100. |
[8] | CAO M, HU C, WU Q, et al. Controlled synthesis of LaPO4 and CePO4 nanorods/nanowires[J]. Nanotechnology, 2005, 16 (2): 282-286. |
[9] | FANG Y P, XU A W, SONG R Q, et al. Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires[J]. J. Am. Chem. Soc., 2003, 125 (51): 16025-16034. |
[10] | ZHANG Y W, YAN Z G, YOU L P, et al. General synthesis and characterization of monocrystalline lanthanide orthophosphate nanowires[J]. Eur. J. Inorg. Chem., 2003, 2003 (22): 4099-4104. |
[11] | BU W B, HUA Z L, CHEN H R, et al. Hydrothermal synthesis of ultraviolet-emitting cerium phosphate single-crystal nanowires[J]. Chem. Lett., 2004, 33 (5): 612-613. |
[12] | ZHANG Y J, GUAN H M. Hydrothermal synthesis and characterization of hexagonal and monoclinic CePO4 single-crystal nanowires[J]. J. Cryst. Growth, 2003, 256 (1/2): 156-161. |
[13] | YAN Z G, ZHANG Y W, YOU L P, et al. General synthesis and characterization of monocrystalline 1D-nanomaterials of hexagonal and orthorhombic lanthanide orthophosphate hydrate[J]. J. Cryst. Growth, 2004, 262 (1/2/3/4): 408-414. |
[14] | YAN Z G, ZHANG Y W, YOU L P, et al. Controlled synthesis and characterization of monazite type monocrystalline nanowires of mixed lanthanide orthophosphates[J]. Solid State Commun., 2004, 130 (1/2): 125-129. |
[15] | TANG C C, BANDO Y, GOLBERG D, et al. Cerium phosphate nanotubes: synthesis, valence state and optical properties[J]. Angew Chem. Int. Ed., 2005, 117 (4): 582-585. |
[16] | XING Y, LI M, DAVIS S A, et al. Synthesis and characterization of cerium phosphate nanowires in microemulsion reaction media[J]. J. Phys. Chem. B, 2006, 110 (3): 1111-1113. |
[17] | LI B, SHEN L Y, LIU X Z, et al. Structure and morphology transition of CePO4 coating on alumina fibers[J]. Journal of materials Science Letters, 2000, 19 (4): 343-347. |
[18] | 邵高耸. 一种简单方法制备具有项链结构的介孔磷酸铈材料[J], 化工新型材料, 2013, 41 (11): 31-33. SHAO G S. A simple preparating route of necklace-like cerium phosphate mesoporous materials[J]. New Chemical Materials, 2013, 41 (11): 31-33. |
[19] | RAJESH K, MUKUNDAN P, PILLAR P K, et al. High-surface-area nanocrystalline cerium phosphate through aqueous sol-gel route[J]. Chem. Mater., 2004, 16 (14): 2700-2705. |
[20] | FANG Y P, XU A W, DONG W F. Highly improved green photoluminescence from CePO4: Tb/LaPO4 core/shell nanowires[J]. Small, 2005, 1 (10): 967-971. |
[21] | YAN R X, SUN X M, WANG X, et al. Crystal structures, anisotropic growth, and optical properties: controlled synthesis of lanthanide orthophosphate one-dimensional nanomaterials[J]. Chem. Eur. J., 2005, 11 (7): 2183-2195. |
[22] | KITAMURA N, AMEZAWA K, YAMAMOTO N, et al. Electrical conduction properties of Sr-doped LaPO4 and CePO4 under oxidizing and reducing conditions[J]. J. Electrochem. Soc., 2004, 152 (4): A658-A663. |
[23] | ZHAO X F, TENG Y C, YANG H, et al. Comparison of microstructure and chemical durability of Ce0.9Gd0.1PO4 ceramics prepared by hot-press and pressureless sintering[J]. Ceramics International, 2015, 41: 11062-11068. |
[24] | YE C, GUO H, ZHANG M H, et al. Synthesis and enhanced electrochemical property of Au-doped cerium phosphate nanowires[J]. Materials Letters, 2014, 131: 141-144. |
[25] | TAKITA Y, SANO K, MURAYA T, et al. Oxidative dehydrogenation of iso-butane to iso-butene (Ⅱ): Rare earth phosphate catalysts[J]. Appl. Catal. A: General, 1998, 170 (1): 23-31. |
[26] | TAKITA Y, NINOMIYA M, MIYAKE H, et al. Catalytic decomposition of perfluorocarbons (Ⅱ): Decomposition of CF4 over AlPO4-rare earth phosphate catalysts[J]. Phys. Chem. Chem. Phys., 1999, 1: 4501-4504. |
[27] | ONODA H, NARIAI H, AI M, et al. Formation and catalytic characterization of various rare earth phosphates[J]. J. Mater. Chem., 2002, 12: 1754-1760. |
[28] | KLOCHKOV V. Comparative analysis of photocatalytic activity of aqueous colloidal solutions of ReVO4:Eu3+ (Re La, Gd, Y), CePO4:Tb, CeO2 and C60[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 310: 128-133. |
[29] | KANG J, BYUN S, NAM S, et al. Synergistic improvement of oxygen reduction reaction on gold/cerium-phosphate catalysts[J]. International Journal of Hydrogen Energy, 2014, 39: 10921-10926. |
[30] | 田春良. 介孔磷酸铈催化剂的合成、表征及丙烷氧化脱氢探究[J]. 材料导报, 2008, 22 (suppl.): 441-442, 451. TIAN C L. Synthesis and characterization of mesoporous cerium phosphate and study of oxidative dehydrogenation of propane[J]. Materials Review, 2008, 22 (suppl.): 441-442,451. |
[31] | LEMONIDOU A A, NALBANDIAN L, VASALOS I. Oxidative dehydrogenation of propane over vanadium oxide based catalysts: effect of support and alkali promoter[J]. Catalysis Today, 2000, 61: 333-341. |
[32] | WAI H L, ZHOU X Q, WENG W Z, et al. Catalytic performance, structure, surface properties and active oxygen species of the fluoride-containing rare earth(alkaline earth)-based catalysts for oxidative coupling of methane and oxidative dehydrogenation of light alkanes[J]. Catalysis Today, 1999, 51: 161-175. |
[33] | CADUS L E, GOMEZ M F, ABELLO M C. Synergy effects in the oxidative dehydrogenation of propane over Mg-MoO4-MoO3 catalysts[J]. Catal. Lett., 1997, 43: 229-233. |
[34] | SHAHBAZI KOOTENAEI A H, TOWFIGHI J, KHODADADI A, et al. Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane[J], Applied Surface Science, 2014, 298: 26-35. |
[35] | WU G J, HEI F, ZHANG N, et al. Oxidative dehydrogenation of propane with nitrous oxide over Fe-ZSM-5 prepared by grafting: characterization and performance[J]. Applied Catalysis A: General, 2013, 468: 230-239. |
[36] | FAN X Q, LI J M, ZHAO Z, et al. Synthesis of a new ordered mesoporous NiMoO4 complex oxide and its efficient catalytic performance for oxidative dehydrogenation of propane[J]. Journal of Energy Chemistry, 2014, 23 (2): 171-178. |
[37] | 杨儒, 李毓姝, 钟旭峰, 等. CePO4纳米线的热稳定性及光学性能[J]. 高等学校化学学报, 2009, 30 (3): 450-455. YANG R, LI Y S, ZHONG X F, et al. Thermal stability and optical performance of CePO4 nanowires[J]. Chem. J. Chinese Universities, 2009, 30 (3): 450-455. |
[38] | CHO K S, TALAPIN D V, GASCHLER W, et al. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles[J]. J. Am. Chem. Soc., 2005, 127: 7140-7147. |
[39] | COLEMAN A W, NICOLIS I, KELLER N, et al. Aggregation of cyclodextrins: an explanation of the abnormal solubility of b-cyclodextrin[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1992, 13: 139-143. |
[40] | JUN Y W, CHOI J S, CHEON J W. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes[J]. Angew. Chem. Ed., 2006, 45: 3414-3439. |
[41] | KRUK M, JARONIEC M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials[J]. Chem. Mater., 2001, 13 (10): 3169-3183. |
[42] | 魏强. 二维相关红外光谱在淀粉分析中的应用[D]. 广州: 华南理工大学, 2010. WEI Q. Application of two-dimensional infrared correlation spectroscopy in starch analysis[D]. Guangzhou: South China Unversity of Technology, 2010. |
[43] | 朱春山, 张强, 宋佳. 改性b-环糊精微球的制备与表征[J]. 高分子材料科学与工程, 2011, 27 (3): 150-153. ZHU C S, ZHANG Q, SONG J. Preparation and characterization of modified b-cyclodextrin microspheres[J]. Polymer Materials Science and Engineering, 2011, 27 (3): 150-153. |
[44] | 顾海欣, 施文健, 吴薇, 等. 壳聚糖交联b-环糊精对水中铬酸盐的吸附研究[J]. 环境科学学报, 2014, 34 (9): 2233-2239. GU H X, SHI W J, WU W, et al. Research on the adsorption of chromate on CTS-CD in aqueous solution[J]. Acta Science Circumstantiae , 2014, 34 (9): 2233-2239. |
[45] | MA T Y, ZHANG X J, SHAO G S, et al. Ordered macroporous titanium phosphonate materials: synthesis, photocatalytic activity, and heavy metal ion adsorption[J]. J. Phys. Chem. C, 2008, 112: 3090-3096. |
[46] | MASUI T, TATEGAKI H, FURUKAWA S, et al. Synthesis and characterization of new environmentally-friendly pigments based on cerium phosphate[J]. Journal of the Ceramic Society of Japan, 2004, 112: 646-651. |
[47] | JAIMEZ E, HIX G B, SLADE R C T. A phosphate-phosphonate of titanium (Ⅳ) prepared from phosphonomethyliminodiacetic acid: characterization, n-alkylamine intercalation and proton conductivity[J]. Solid State Ionics, 1997, 97: 195-201. |
[48] | TAKITA Y, QING X, TAKAMI A, et al. Oxidative dehydrogenation of isobutane to isobutene (Ⅲ): Reaction mechanism over CePO4 catalyst[J]. Applied Catalysis A: General, 2005, 296: 63-69. |
[49] | SPLINTER S J, ROFAGHA R, MCINTYRE N S, et al. XPS characterization of the corrosion film formed on nanocrystalline Ni-P alloys in sulphuric acid[J]. Surf. Interface Anal., 1996, 24: 181-186. |
[50] | GLORIEUX B, BERJOAN R, MATECKI M, et al. X-Ray photoelectron spectroscopy analyses of lanthanides phosphates[J]. Applied Surface Science, 2007, 253: 3349-3359. |
[51] | RAO M V R, SHRIPATHI T. Photoelectron spectroscopic study of X-ray induced reduction of CeO2[J]. J. Electron. Spectrosc. Relat. Phenom., 1997, 87: 121-126. |
[52] | 徐爱菊, 照日格图, 林勤, 等. 焦钒酸镍的X射线光电子能谱及其氧化脱氢催化性能研究[J]. 功能材料, 2007, 38 (9): 1489-1491. XU A J, BAO Z R G T, LIN Q, et al. The study of X-ray photoelectron spectroscopy and catalytic performance in ODH of pyro-Ni2V2O7 catalysts[J]. Functional Material, 2007, 38 (9): 1489-1491. |
[53] | ZHANG Q H, WANG Y, OHISHI Y, et al. Vanadium-containing MCM-41 for partial oxidation of lower alkanes[J]. J. Catal., 2001, 202: 308-318. |
[54] | 李勇, 申文杰. 金属氧化物纳米催化的形貌效应[J]. 中国科学: 化学, 2012, 42: 376-389. LI Y, SHEN W J. Morphology-dependent nanocatalysis on metal oxides[J]. Scientia Sinica: Chimica, 2012, 42: 376-389. |
[55] | ZHOU K B, LI Y D. Catalysis based on nanocrystals with well-defined facets[J]. Angew. Chem. Int. Ed., 2012, 51: 602-613 |
[56] | GELLINGS P J, BOUWMEESTER H J M. Solid state aspects of oxidation catalysis[J]. Catal. Today, 2000, 58: 1-53. |
[57] | BALDI M, FINOCCHIO E, PISTARINO C, et al. Evaluation of the mechanism of the oxy-dehydrogenation of propane over manganese oxide[J]. Appl. Catal. A: Gen., 1998, 173: 61-74. |
[58] | 郭建平. VOx/SBA-15催化剂上提高丙烷氧化脱氢反应选择性的研究[D]. 厦门: 厦门大学, 2008. GUO J P. Studies on the improvement of selectivity of VOx/SBA-15 catalysts for the oxidative dehydrogenation of propane to propene[D]. Xiamen: Xiamen University, 2008. |
[59] | CREASER D C, HUDGINS R R, SILVESTON P L, et al. Kinetic modeling of oxygen dependence in oxidative dehydrogenation of propane[J]. Canadian Journal of Chemical Engineering, 2000, 78: 182-193.Letters, 2004, 58(11): 1687-1791. |
[2] | Li Q, Yam V W W, Redox luminescence switch based on energy transfer in CePO4: Tb3+ nanowires[J]. Angew. Chem. Int. Ed., 2007, 46(19): 3486-3489. |
[3] | Zhu L, Liu X M, Liu X D, Li Q, Li J Y, Zhang S Y, Cao X Q, Facile sonochemical synthesis of CePO4: Tb/LaPO4 core/shell nanorods with highly improved photoluminescent properties[J]. Nanotechnology, 2006, 17(16): 4217-4222. |
[4] | Amin Shiralizadeh D, Mohammad Reza G, Parviz N, Facile sonochemical synthesis and morphology control of CePO4 nanostructures via an oriented attachment mechanism: Application as luminescent probe for selective sensing of Pb2+ ion in aqueous solution, Materials Science and Engineering C, 2014, 42, 774-781. |
[5] | Yang Z, Ji C, Interface mechanism of a rapid and mild aqueous-organic method to prepare CePO4 nanostructures, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2014, 444, 246-251. |
[6] | Palma-Ramírez D, Domínguez-Crespo M A, Torres-Huerta A M, Dorantes-Rosales H, Ramírez-Meneses E, Rodríguez E, Microwave-assisted hydrothermal synthesis of CePO4 nanostructures:Correlation between the structural and optical properties, Journal of Alloys and Compounds, 2015, 643, s209-s218. |
[7] | Jinrong B, Xiaowei Z, Ying L, Wenxian L, Ranbo Y, N,N-dimethylformamide-induced synthesis and photoluminescence of CePO4 and Ce0.95PO4:Tb0.05 with sphere-like nanostructures, Materials Letters, 2014,124,97-100. |
[8] | Cao M, Hu C, Wu Q, Guo C, Qi Y, Wang E, Controlled synthesis of LaPO4 and CePO4 nanorods/nanowires[J]. Nanotechnology, 2005, 16(2): 282-286. |
[9] | Fang Y P, Xu A W, Song R Q, Zhang H X, You L P, Yu J, Liu H Q, Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires[J]. J Am. Chem. Soc., 2003, 125(51): 16025-16034. |
[10] | Zhang Y W, Yan Z G, You L P, Si R, Yan C H, General synthesis and characterization of monocrystalline lanthanide orthophosphate nanowires[J]. Eur. J. Inorg. Chem., 2003, 2003(22): 4099-4104. |
[11] | Bu W B, Hua Z L, Chen H R, Zhang L X, Shi J L, Hydrothermal synthesis of ultraviolet-emitting cerium phosphate single-crystal nanowires[J]. Chem. Lett., 2004, 33(5): 612-613. |
[12] | Zhang Y J, Guan H M, Hydrothermal synthesis and characterization of hexagonal and monoclinic CePO4 single-crystal nanowires[J]. J. Cryst. Growth., 2003, 256(1-2): 156-161. |
[13] | Yan Z G, Zhang Y W, You L P, Si R, Yan C H, General synthesis and characterization of monocrystalline 1D-nanomaterials of hexagonal and orthorhombic lanthanide orthophosphate hydrate[J]. J. Cryst. Growth., 2004, 262(1-4): 408-414. |
[14] | Yan Z G, Zhang Y W, You L P, Si R, Yan C H, Controlled synthesis and characterization of monazite type monocrystalline nanowires of mixed lanthanide orthophosphates[J]. Solid State Commun., 2004, 130(1-2): 125-129. |
[15] | Tang C C, Bando Y, Golberg D, Ma R Z, Cerium phosphate nanotubes: synthesis, valence state and optical properties[J]. Angew Chem. Int. Ed., 2005, 117(4): 582-585. |
[16] | Xing Y, Li M, Davis S A, Mann S, Synthesis and characterization of cerium phosphate nanowires in microemulsion reaction media[J]. J. Phys. Chem. B, 2006, 110(3): 1111-1113. |
[17] | Li B, Shen L Y, Liu X Z, Wang T M, Structure and morphology transition of CePO4 coating on alumina fibers[J]. Journal of materials Science Letters, 2000, 19(4): 343-347. |
[18] | Shao Gaosong(邵高耸), A simple preparating route of necklace-like cerium phosphate mesoporous materials[J]. New Chemical Materials(化工新型材料), 2013, 41(11), 31-33. |
[19] | Rajesh K, Mukundan P, Pillai P K, Nair V R, Warrier K G K, High-surface-area nanocrystalline cerium phosphate through aqueous sol-gel route[J]. Chem. Mater., 2004, 16(14): 2700-2705. |
[20] | Fang Y P, Xu A W, Dong W F, Highly improved green photoluminescence from CePO4: Tb/LaPO4 core/shell nanowires[J]. Small, 2005, 1(10): 967-971. |
[21] | Yan R X, Sun X M, Wang X, Peng Q, Li Y D, Crystal structures, Anisotropic growth, and optical properties: controlled synthesis of lanthanide orthophosphate one-demensional nanomaterials[J]. Chem. Eur. J., 2005, 11(7): 2183-2195. |
[22] | Kitamura N, Amezawa K, Yamamoto N, Omata T, Otsuka-Yao-Matsuo Y, Electrical conduction properties of Sr-doped LaPO4 and CePO4 under oxidizing and reducing conditions[J]. J. Electrochem. Soc., 2004, 152(4): A658-A663. |
[23] | Xiaofeng Z, Yuancheng T, HangY, Yi H, Jiyan M, Comparison of microstructure and chemical durability of Ce0.9Gd0.1PO4 ceramics prepared by hot-press and pressureless sintering, Ceramics International, 2015, 41, 11062-11068. |
[24] | Cui Y, Huan G, Menghuan Z, Hongguo Z, Jianqiang H, Xuandi L, Aiqing L, Synthesis and enhanced electrochemical property of Au-doped cerium phosphate nanowires, Materials Letters, 2014, 131, 141-144. |
[25] | Takita Y, Sano K, Muraya T, Nishiguchi H, Kawata N, Ito M, Akbay T, Ishihara T, Oxidative dehydrogenation of iso-butane to iso-butene II. Rare earth phosphate catalysts[J]. Appl. Catal. A: General, 1998, 170(1): 23-31. |
[26] | Takita Y, Ninomiya M, Miyake H, Wakamatsu H, Yoshinaga Y, Ishihara T, Catalytic decomposition of perfluorocarbons Part II. Decomposition of CF4 over AlPO4-rare earth phosphate catalysts. Phys. Chem. Chem. Phys., 1999, 1, 4501-4504. |
[27] | Onoda H, Nariai H, Moriwaki A, Maki H, Mottoka I, Formation and catalytic characterization of various rare earth phosphates, J. Mater. Chem., 2002, 12, 1754-1760. |
[28] | Vladimir K, Comparative analysis of photocatalytic activity of aqueous colloidal solutions of ReVO4:Eu3+(Re = La, Gd, Y), CePO4:Tb, CeO2 and C60, Journal of Photochemistry and Photobiology A: Chemistry, 2015, 310, 128-133. |
[29] | Joonhyeon K, Sujin B, Seunghoon N, Suji K, Taeho M, Byungwoo P, Synergistic improvement of oxygen reduction reaction on gold/cerium-phosphate catalysts, International Journal of Hydrogen Energy, 2014, 39, 10921-10926. |
[30] | Tian Chunliang(田春良), Synthesis and characterization of mesoporous cerium phosphate and study of oxidative dehydrogenation of propane[J]. Materials Review(材料导报), 2008, 22(suppl.), 441-442,451. |
[31] | Lemonidou A A, Nalbandian L, Vasalos I A, Oxidative dehydrogenation of propane over vanadium oxide based catalysts: Effect of support and alkali promoter[J]. Catalysis Today, 2000,61: 333-341. |
[32] | H L Wai, X Q Zhou, W Z Weng, Q L Rui, S C Zi, W D Zhang, M S Chen, J Z Luo, S Q Zhou, Catalytic performance,structure, surface properties and active oxygen species of the fluoride-containing rare earth(alkaline earth)-based catalysts for oxidative coupling of methane and oxidative dehydrogenation of light alkanes[J]. Catalysis Today, 1999,51, 161-175. |
[33] | Cadus L E, Gomez M F, Abello M C, Synergy effects in the oxidative dehydrogenation of propane over Mg-MoO4-MoO3 catalyts[J], Catal. Lett., 1997, 43, 229-233. |
[34] | Shahbazi Kootenaei A H, Towfighia J, Khodadadi A, Mortazavi Y, Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane[J], Applied Surface Science, 2014, 298, 26-35. |
[35] | Wu G J, Hei F, Zhang N, Guan N J, Li L D, Grünert W G, Oxidative dehydrogenation of propane with nitrous oxide overFe-ZSM-5 prepared by grafting: Characterization and performance[J], Applied Catalysis A: General, 2013, 468, 230-239. |
[36] | Fan X Q, Li J M, Zhao Z, Wei Y C, Liu J, Duan A, Jiang G Y, Synthesis of a new ordered mesoporous NiMoO4 complex oxide and its efficient catalytic performance for oxidative dehydrogenation of propane[J], Journal of Energy Chemistry, 2014, 171-178. |
[37] | Yang Ru(杨儒), Li Yushu(李毓姝), Zhong Xufeng(钟旭峰), Li Min(李敏), Thermal stability and optical performance of CePO4 nanowires[J]. Chem. J Chinese Unicersities(高等学校化学学报), 2009, 30(3), 450-455. |
[38] | Cho K S, Talapin D V, Gaschler W, Murray C B, Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles[J]. J. Am. Chem. Soc., 2005, 127, 7140-7147. |
[39] | Anthony W, Coleman, Ioannis N, Aggregation of cyclodextrins: an explanation of the abnormal solubility of b-cyclodextrin[J]. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 1992, 13, 139-143. |
[40] | Jun Y W, Choi J S, Cheon J W, Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes[J]. Angew. Chem. Ed., 2006, 45, 3414-3439. |
[41] | Kruk M, Jaroniec M, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials[J]. Chem. Mater., 2001, 13(10): 3169-3183. |
[42] | Wei Qiang(魏强), Application of two-dimensional infrared correlation spectroscopy in starch analysis[D] Guangzhou: South China Unversity of Technology, 2010. |
[43] | Zhu Chuanshan(朱春山), Zhang Qiang(张强), Song Jia(宋佳), Preparation and characterization of modified b-cyclodextrin microspheres[J]. Polymer Materials Science and Engineering(高分子材料科学与工程), 2011, 27(3), 150-153. |
[44] | Gu Haixin(顾海欣), Shi Wenjian(施文健), Wu Wei(吴薇), Wang Jingzhi(王精志), Yang Qinlin(杨琴淋), Research on the adsorption of chromate on CTS-CD in aqueous solution[J]. Acta Science Circumstantiae (环境科学学报), 2014, 34(9), 2233-2239. |
[45] | Ma T Y, Zhang X J, Shao G S, Cao J L, Yuan Z Y, Ordered macroporous titanium phosphonate materials: synthesis, photocatalytic activity, and heavy metal ion adsorption[J]. J. Phys. Chem. C, 2008, 112, 3090-3096. |
[46] | Masui T, Tategaki H, Furukawa S, Imanaka N, Synthesis and characterization of new environmentally-friendly pigments based on cerium phosphate[J]. Journal of the Ceramic Society of Japan, 2004, 112, 646-651. |
[47] | Jaimez E, Hix G B, Slade R C T, A phosphate-phosphonate of titanium (IV) prepared from phosphonomethyliminodiacetic acid: characterization, n-alkylamine intercalation and proton conductivity[J]. Solid State Ionics 1997, 97,195-201. |
[48] | Takita Y, Qing X, Takami A, Nishiguchi H, Nagaoka K, Oxidative dehydrogenation of isobutane to isobutene III: reaction mechanism over CePO4 catalyst[J]. Applied Catalysis A: General, 2005, 296, 63-69. |
[49] | Splinter S J, Rofagha R, Mcintyre N S, Erb U, XPS characterization of the corrosion film formed on nanocrystalline Ni-P alloys in sulphuric acid[J]. Surf. Interface Anal., 1996, 24, 181-186. |
[50] | Glorieux B, Berjoan R, Matecki M, Kammouni A, Perarnau D, X-ray photoelectron spectroscopy analyses of lanthanides phosphates[J]. Applied Surface Science, 2007, 253, 3349-3359. |
[51] | Rao M V R, Shripathi T, Photoelectron spectroscopic study of X-ray induced reduction of CeO2[J]. J Electron Spectrosc. Relat. Phenom., 1997, 87,121-126. |
[52] | Xu Aiju(徐爱菊), Bao Zhaorigetu(照日格图), Lin Qin(林勤), Liu Lianyun(刘莲云), The study of X-ray photoelectron spectroscopy and catalytic performance in ODH of pyro-Ni2V2O7 catalysts[J]. Functional Material(功能材料), 2007, 38(9), 1489-1491. |
[53] | Zhang Q H, Wang Y, Ohishi Y, Shishido T, Takehira K, Vanadium-containing MCM-41 for partial oxidation of lower alkanes[J]. J. Catal., 2001, 202, 308-318. |
[54] | Li Yong(李勇), Shen Wenjie(申文杰), Morphology-dependent nanocatalysis on metal oxides[J]. Scientia Sinica: Chimica(中国科学: 化学), 2012, 42, 376-389. |
[55] | Kebin Z, Yadong L, Catalysis based on nanocrystals with well-defined facets, Angew. Chem. Int. Ed., 2012, 51, 602-613 |
[56] | Gellings P J, Bouwmeester H J M, Solid state aspects of oxidation catalysis[J]. Catal. Today, 2000, 58, 1-53. |
[57] | Baldi M, Finocchio E, Pistarino C, Busca G, Evaluation of the mechanism of the oxy-dehydrogenation of propane over manganese oxide[J]. Appl. Catal. A: Gen., 1998, 173, 61-74. |
[58] | Guo Jianping(郭建平), Studies on the improvement of selectivity of VOx/SBA-15 catalysts for the oxidative dehydrogenation of propane to propene[D], Fujian: Xiamen University, 2008. |
[59] | Creaser D C, Andersson B, Hudgins R R, Silveston P L, Kinetic modeling of oxygen dependence in oxidative dehydrogenation of propane[J]. Canadian Journal of Chemical Engineering, 2000, 78, 182-193. |
[1] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[5] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[6] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[7] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[8] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[9] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[10] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[11] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[12] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[13] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[14] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[15] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||