化工学报 ›› 2016, Vol. 67 ›› Issue (S1): 7-21.DOI: 10.11949/j.issn.0438-1157.20152002
胡洪超1, 崔英德2
收稿日期:
2016-01-03
修回日期:
2016-05-18
出版日期:
2016-08-31
发布日期:
2016-08-31
通讯作者:
崔英德,samhuhongchao@gmail.com
HU Hongchao1, CUI Yingde2
Received:
2016-01-03
Revised:
2016-05-18
Online:
2016-08-31
Published:
2016-08-31
摘要:
太阳能的充分应用是解决目前人类所面临的能源短缺和环境污染的根本途径。聚合物太阳能电池作为第三代太阳能光伏技术已得到二十多年的研究,其太阳能转化效率已超过10%。回顾聚合物太阳能电池的发展历史和理论研究,太阳能电池的材料与结构对太阳能电池的效率影响很大,尤其是给体材料。从PPV类材料到PT类材料再到PCDTBT、TTBDT、BDTTPD等能级调节后的受体材料,每一次材料的升级,都能让聚合物太阳能电池的效率大幅提高。在聚合物太阳能电池的理论逐渐认识清楚,聚合物太阳能电池制作工艺不断成熟的情况下,研究新型给体材料对向聚合物太阳能电池实用化迈进尤为重要。
中图分类号:
胡洪超, 崔英德. 聚合物太阳能电池及材料研究进展[J]. 化工学报, 2016, 67(S1): 7-21.
HU Hongchao, CUI Yingde. Progress of polymer solar cells and materials[J]. CIESC Journal, 2016, 67(S1): 7-21.
[1] | CHAPIN D, FULLER C, PEARSON G. A new silicon p-n junction photocell for converting solar radiation into electrical power[J]. Journal of Applied Physics, 1954, 25(5):676-677. |
[2] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 42)[J]. Progress in Photovoltaics:Research and Applications, 2013, 21(5):827-837. |
[3] | SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3):510-519. |
[4] | GREEN M A. Solar Cells:Operating Principles, Techno-logy, and System Applications[M]. Englewood Cliffs, NJ:Prentice-Hall, Inc., 1982:288. |
[5] | DENNLER G, SCHARBER M C, BRABEC C J. Polymer-fullerene bulk-heterojunction solar cells[J]. Advanced Materials, 2009, 21(13):1323-1338. |
[6] | FORREST S R. The path to ubiquitous and low-cost organic electronic appliances on plastic[J]. Nature, 2004, 428(6986):911-918. |
[7] | LI G, ZHU R, YANG Y. Polymer solar cells[J]. Nat. Photon., 2012, 6(3):153-161. |
[8] | MCGEHEE M D. Nanostructured organic-inorganic hybrid solar cells[J]. MRS Bulletin, 2009, 34(2):95-100. |
[9] | 黎立桂, 鲁广昊, 杨小牛, 等. 聚合物太阳能电池研究进展[J]. 科学通报, 2006, 51(21):145-158. LI L G, LU G H, YANG X N, et al. Progress in polymer solar cells[J]. Chin. Sci. Bull., 2006, 51(21):145-158. |
[10] | 密保秀, 高志强, 邓先宇, 等. 基于有机薄膜的太阳能电池材料与器件研究进展[J]. 中国科学:B辑, 2008, 38(11):957-975.MI B X, GAO Z Q, DENG X Y, et al. Progress of solar cell materials and devices based on organic thin film[J]. Sci. in Chin.:B, 2008, 38(11):957-975. |
[11] | 叶怀英, 李文, 李维实. 有机太阳能电池用聚合物给体材料的研究进展[J]. 有机化学, 2012, 32(2):266-283. YE H Y, LI W, LI W S, et al. Progress of polymer materials for organic solar cells[J]. Chin. J. Org. Chem., 2012, 32(2):266-283. |
[12] | LIANG Y, XU Z, XIA J, et al. For the bright future bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%[J]. Advanced Materials, 2010, 22(20):E135-E138. |
[13] | KREBS F C. Fabrication and processing of polymer solar cells:a review of printing and coating techniques[J]. Solar Energy Materials and Solar Cells, 2009, 93(4):394-412. |
[14] | KREBS F C. All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps[J]. Organic Electronics, 2009, 10(5):761-768. |
[15] | KREBS F C, ALSTRUP J, SPANGGAARD H, et al. Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate[J]. Solar Energy Materials and Solar Cells, 2004, 83(2/3):293-300. |
[16] | KREBS F C, GEVORGYAN S A, ALSTRUP J. A roll-to-roll process to flexible polymer solar cells:model studies, manufacture and operational stability studies[J]. J. Mater. Chem., 2009, 19(30):5442-5451. |
[17] | KREBS F C, J RGENSEN M, NORRMAN K, et al. A complete process for production of flexible large area polymer solar cells entirely using screen printing-first public demonstration[J]. Solar Energy Materials and Solar Cells, 2009, 93(4):422-441. |
[18] | KREBS F C, NIELSEN T D, FYENBO J, et al. Manufacture, integration and demonstration of polymer solar cells in a lamp for the "Lighting Africal" initiative[J]. Energy Environ. Sci., 2010, 3(5):512-525. |
[19] | KREBS F C, SPANGGAARD H. Significant improvement of polymer solar cell stability[J]. Chemistry of Materials, 2005, 17(21):5235-5237. |
[20] | HIRAMOTO M, FUJIWARA H, YOKOYAMA M. p-i-n like behavior in three-layered organic solar cells having a co-deposited interlayer of pigments[J]. Journal of Applied Physics, 1992, 72(8):3781-3787. |
[21] | SHAHEEN S E, BRABEC C J, SARICIFTCI N S, et al. 2.5% efficient organic plastic solar cells[J]. Applied Physics Letters, 2001, 78:841-843. |
[22] | CHIANG C, FINCHER C, PARK Y, et al. Electrical conductivity in doped polyacetylene[J]. Physical Review Letters, 1977, 39(17):1098-1101. |
[23] | HASTINGS J, POUGET J, SHIRANE G, et al. One-dimensional phonons and "phase-ordering" phase transition in a Hg-As-F compound[J]. Phys. Rev. Lett. (United States), 1977, 39:23. |
[24] | SU W, SCHRIEFFER J, HEEGER A. Solitons in polyacetylene[J]. Physical Review Letters, 1979, 42(25):1698-1701. |
[25] | WEINBERGER B, EHRENFREUND E, PRON A, et al. Electron spin resonance studies of magnetic soliton defects in polyacetylene[J]. The Journal of Chemical Physics, 1980, 72:4749-4755. |
[26] | GLENIS S, TOURILLON G, GARNIER F. Photoelectro-chemical properties of thin films of polythiophene and derivatives:doping level and structure effects[J]. Thin Solid Films, 1984, 122(1):9-17. |
[27] | GLENIS S, TOURILLON G, GARNIER F. Influence of the doping on the photovoltaic properties of thin films of poly-3-methylthiophene[J]. Thin Solid Films, 1986, 139(3):221-231. |
[28] | SARICIFTCI N S, SMILOWITZ L, HEEGER A J, et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene[J]. Science, 1992, 258(5087):1474. |
[29] | YU G, GAO J, HUMMELEN J, et al. Polymer photo-voltaic cells:enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995, 270(5243):1789. |
[30] | HALLS J, WALSH C, GREENHAM N, et al. Efficient photodiodes from interpenetrating polymer networks[J]. Nature, 1995, 376(6540):498-500. |
[31] | PADINGER F, RITTBERGER R S, SARICIFTCI N S. Effects of postproduction treatment on plastic solar cells[J]. Advanced Functional Materials, 2003, 13(1):85-88. |
[32] | MA W, YANG C, GONG X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology[J]. Advanced Functional Materials, 2005, 15(10):1617-1622. |
[33] | KIM J Y, LEE K, COATES N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing[J]. Science, 2007, 317(5835):222. |
[34] | LI G, SHROTRIYA V, YAO Y, et al. Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly (3-hexylthiophene)[J]. Journal of Applied Physics, 2005, 98:043704. |
[35] | LI G, SHROTRIYA V, HUANG J, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends[J]. Nature Materials, 2005, 4(11):864-868. |
[36] | LI G, YAO Y, YANG H, et al. Solvent annealing effect in polymer solar cells based on poly (3-hexylthiophene) and methanofullerenes[J]. Advanced Functional Materials, 2007, 17(10):1636-1644. |
[37] | SIEVERS D W, SHROTRIYA V, YANG Y. Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells[J]. Journal of Applied Physics, 2006, 100:114509. |
[38] | LI G, CHU C W, SHROTRIYA V, et al. Efficient inverted polymer solar cells[J]. Applied Physics Letters, 2006, 88:253503. |
[39] | YUAN Y, REECE T J, SHARMA P, et al. Efficiency enhancement in organic solar cells with ferroelectric polymers[J]. Nature Materials, 2011, 10(4):296-302. |
[40] | LIANG Y, FENG D, WU Y, et al. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties[J]. J. Am. Chem. Soc., 2009, 131(22):7792-7799. |
[41] | LIANG Y, WU Y, FENG D, et al. Development of new semiconducting polymers for high performance solar cells[J]. Journal of the American Chemical Society, 2008, 131(1):56-57. |
[42] | LIANG Y, YU L. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance[J]. Accounts of Chemical Research, 2010, 43(9):1227-1236. |
[43] | LIU Y, WAN X, WANG F, et al. Spin-coated small molecules for high performance solar cells[J]. Advanced Energy Materials, 2011, 1(5):771-775. |
[44] | CHEN H Y, HOU J, ZHANG S, et al. Polymer solar cells with enhanced open-circuit voltage and efficiency[J]. Nature Photonics, 2009, 3(11):649-653. |
[45] | CHEN L M, HONG Z, LI G, et al. Recent progress in polymer solar cells:manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells[J]. Advanced Materials, 2009, 21(14/15):1434-1449. |
[46] | PRICE S C, STUART A C, YANG L, et al. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells[J]. Journal of the American Chemical Society, 2011, 133(12):4625-4631. |
[47] | ZHOU H, YANG L, STUART A C, et al. Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency[J]. Angewandte Chemie, 2011, 123(13):3051-3054. |
[48] | SU M S, KUO C Y, YUAN M C, et al. Improving device efficiency of polymer/fullerene bulk heterojunction solar cells through enhanced crystallinity and reduced grain boundaries induced by solvent additives[J]. Advanced Materials, 2011, 23(29):3315-3319. |
[49] | YANG J, ZHU R, HONG Z, et al. A robust inter-connecting layer for achieving high performance tandem polymer solar cells[J]. Advanced Materials, 2011, 23(30):3465-3470. |
[50] | SUN Y, TAKACS C J, COWAN S R, et al. Efficient, air-stable bulk heterojunction polymer solar cells using MoOx as the anode interfacial layer[J]. Advanced Materials, 2011, 23(19):2226-2230. |
[51] | CHU T Y, LU J, BEAUPRÉ S, et al. Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2',3'-d]silole copolymer with a power conversion efficiency of 7.3%[J]. Journal of the American Chemical Society, 2011, 133(12):4250-4253. |
[52] | AMB C M, CHEN S, GRAHAM K R, et al. Dithienogermole as a fused electron donor in bulk heterojunction solar cells[J]. Journal of the American Chemical Society, 2011, 133(26):10062-10065. |
[53] | GREEN M A, EMERY K. Solar cell efficiency tables (version 1)[J]. Progress in Photovoltaics:Research and Applications, 1993, 1(3):225-227. |
[54] | GREEN M A, EMERY K, KING D L, et al. Solar cell efficiency tables (version 28)[J]. Progress in Photovoltaics:Research and Applications, 2006, 14(5):455-461. |
[55] | GREEN M A, EMERY K, KING D L, et al. Solar cell efficiency tables (version 29)[J]. Progress in Photovoltaics:Research and Applications, 2007, 15(1):35-40. |
[56] | GREEN M A, EMERY K, HISIKAWA Y, et al. Solar cell efficiency tables (version 30)[J]. Progress in Photovoltaics:Research and Applications, 2007, 15(5):425-430. |
[57] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 31)[J]. Progress in Photovoltaics:Research and Applications, 2008, 16(1):61-67. |
[58] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 32)[J]. Progress in Photovoltaics:Research and Applications, 2008, 16(5):435-440. |
[59] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 33)[J]. Progress in Photovoltaics:Research and Applications, 2009, 17(1):85-94. |
[60] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 34)[J]. Progress in Photovoltaics:Research and Applications, 2009, 17(5):320-326. |
[61] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 35)[J]. Progress in Photovoltaics:Research and Applications, 2010, 18(2):144-150. |
[62] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 36)[J]. Progress in Photovoltaics:Research and Applications, 2010, 18(5):346-352. |
[63] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 37)[J]. Progress in Photovoltaics:Research and Applications, 2011, 19(1):84-92. |
[64] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 38)[J]. Progress in Photovoltaics:Research and Applications, 2011, 19(5):565-572. |
[65] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 39)[J]. Progress in Photovoltaics:Research and Applications, 2012, 20(1):12-20. |
[66] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 40)[J]. Progress in Photovoltaics:Research and Applications, 2012, 20(5):606-614. |
[67] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 41)[J]. Progress in Photovoltaics:Research and Applications, 2013, 21(1):1-11. |
[68] | MORITA S, ZAKHIDOV A A, YOSHINO K. Doping effect of buckminsterfullerene in conducting polymer:change of absorption spectrum and quenching of luminescene[J]. Solid State Communications, 1992, 82(4):249-252. |
[69] | HUMMELEN J C, KNIGHT B W, LEPEQ F, et al. Preparation and characterization of fulleroid and methanofullerene derivatives[J]. The Journal of Organic Chemistry, 1995, 60(3):532-538. |
[70] | HUYNH W U, DITTMER J J, ALIVISATOS A P. Hybrid nanorod-polymer solar cells[J]. Science, 2002, 295(5564):2425. |
[71] | HOPPE H, SARICIFTCI N, MEISSNER D. Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells[J]. Molecular Crystals and Liquid Crystals, 2002, 385(1):113-119. |
[72] | YANG X, LOOS J, VEENSTRA S C, et al. Nanoscale morphology of high-performance polymer solar cells[J]. Nano Letters, 2005, 5(4):579-583. |
[73] | MONTANARI I, NOGUEIRA A F, NELSON J, et al. Transient optical studies of charge recombination dynamics in a polymer/fullerene composite at room temperature[J]. Applied Physics Letters, 2002, 81:3001. |
[74] | HUYNH W U, DITTMER J J, LIBBY W C, et al. Controlling the morphology of nanocrystal-polymer compo-sites for solar cells[J]. Advanced Functional Materials, 2003, 13(1):73-79. |
[75] | WIENK M M, KROON J M, VERHEES W J H, et al. Efficient methano |
[70] | fullerene/MDMO-PPV bulk heterojunction photovoltaic cells[J]. Angewandte Chemie, 2003, 115(29):3493-3497. |
[76] | XUE J, UCHIDA S, RAND B P, et al. 4.2% efficient organic photovoltaic cells with low series resistances[J]. Applied Physics Letters, 2004, 84:3013. |
[77] | KIM Y, COOK S, TULADHAR S M, et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells[J]. Nature Materials, 2006, 5(3):197-203. |
[78] | LENES M, WETZELAER G J A H, KOOISTRA F B, et al. Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells[J]. Advanced Materials, 2008, 20(11):2116-2119. |
[79] | THOMPSON B C, FRÉCHET J M J. Polymer-fullerene composite solar cells[J]. Angewandte Chemie International Edition, 2008, 47(1):58-77. |
[80] | WANG E, WANG L, LAN L, et al. High-performance polymer heterojunction solar cells of a polysilafluorene derivative[J]. Applied Physics Letters, 2008, 92:033307. |
[81] | WIENK M M, TURBIEZ M, GILOT J, et al. Narrow bandgap diketo pyrrolo pyrrole polymer solar cells:the effect of processing on the performance[J]. Advanced Materials, 2008, 20(13):2556-2560. |
[82] | HOU J, CHEN H Y, ZHANG S, et al. Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells[J]. Journal of the American Chemical Society, 2009, 131(43):15586-15587. |
[83] | CHENG Y J, YANG S H, HSU C S. Synthesis of conjugated polymers for organic solar cell applications[J]. Chemical Reviews, 2009, 109(11):5868-5923。 |
[84] | HUO L, HOU J, ZHANG S, et al. A polybenzo[1,2-b:4,5-b']dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells[J]. Angewandte Chemie International Edition, 2010, 49(8):1500-1503. |
[85] | MIN NAM Y, HUH J, HO JO W. Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells[J]. Solar Energy Materials and Solar Cells, 2010, 94(6):1118-1124. |
[86] | SISTA S, PARK M H, HONG Z, et al. Highly efficient tandem polymer photovoltaic cells[J]. Advanced Materials, 2010, 22(3):380-383. |
[87] | LI Y. Molecular design of photovoltaic materials for polymer solar cells:toward suitable electronic energy levels and broad absorption[J]. Accounts of Chemical Research, 2012, 45(5):723-733. |
[88] | SARICIFTCI N, SMILOWITZ L, HEEGER A, et al. Semiconducting polymers (as donors) and buckminster-fullerene (as acceptor):photoinduced electron transfer and heterojunction devices[J]. Synthetic Metals, 1993, 59(3):333-352. |
[89] | LIU J, SHI Y, YANG Y. Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices[J]. Advanced Functional Materials, 2001, 11(6):420. |
[90] | FROHNE H, SHAHEEN S E, BRABEC C J, et al. Influence of the anodic work function on the performance of organic solar cells[J]. ChemPhysChem, 2002, 3(9):795-799. |
[91] | GADISA A, SVENSSON M, ANDERSSON M R, et al. Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative[J]. Applied Physics Letters, 2004, 84:1609. |
[92] | SCHARBER M C, MüHLBACHER D, KOPPE M, et al. Design rules for donors in bulk heterojunction solar cells towards 10% energy conversion efficiency[J]. Advanced Materials, 2006, 18(6):789-794. |
[93] | ZHU Z, MVHLBACHER D, MORANA M, et al. Design rules for efficient organic solar cells[M]//High-Efficient Low-Cost Photovoltaics. Berlin:Springer, 2009:195-222. |
[94] | ASTM. Tables for terrestrial direct normal solar spectral irradiance for Air Mass 1.5[M]//Annual Book of ASTM Standards. Philadelphia:ASTM, 1088. |
[95] | BLOM P W M, MIHAILETCHI V D, KOSTER L J A, et al. Device physics of polymer:fullerene bulk heterojunction solar cells[J]. Advanced Materials, 2007, 19(12):1551-1566. |
[96] | SCHILINSKY P, WALDAUF C, HAUCH J, et al. Simulation of light intensity dependent current characteristics of polymer solar cells[J]. Journal of Applied Physics, 2004, 95(5):2816-2819. |
[97] | ZERZA G, BRABEC C, CERULLO G, et al. Ultrafast charge transfer in conjugated polymer-fullerene composites[J]. Synthetic Metals, 2001, 119(1/2/3):637-638. |
[98] | MIHAILETCHI V D, VAN DUREN J K, BLOM P W, et al. Electron transport in a methanofullerene[J]. Advanced Functional Materials, 2003, 13(1):43-46. |
[99] | WIENK M M, KROON J M, VERHEES W J, et al. Efficient methano |
[70] | fullerene/MDMO-PPV bulk heter-ojunction photovoltaic cells[J]. Angewandte Chemie, 2003, 115(29):3493-3497. |
[100] | YAO Y, SHI C, LI G, et al. Effects of C70 derivative in low band gap polymer photovoltaic devices:spectral complementation and morphology optimization[J]. Applied Physics Letters, 2006, 89:153507. |
[101] | JENEKHE S A, OSAHENI J A. Excimers and exciplexes of conjugated polymers[J]. Science, 1994, 265(5173):765-768. |
[102] | JENEKHE S A, YI S. Efficient photovoltaic cells from semiconducting polymer heterojunctions[J]. Applied Physics Letters, 2000, 77(17):2635-2637. |
[103] | KARG S, RIESS W, DYAKONOV V, et al. Electrical and optical characterization of poly (phenylene-vinylene) light emitting diodes[J]. Synthetic Metals, 1993, 54(1):427-433. |
[104] | SUZUKI Y, HASHIMOTO K, TAJIMA K. Synthesis of regioregular poly(p-phenylenevinylene)s by horner reaction and their regioregularity characterization[J]. Macromolecules, 2007, 40(18):6521-6528. |
[105] | COLLADET K, NICOLAS M, GORIS L, et al. Low-band gap polymers for photovoltaic applications[J]. Thin Solid Films, 2004, 451:7-11. |
[106] | COLLADET K, FOURIER S, CLEIJ T J, et al. Low band gap donor-acceptor conjugated polymers toward organic solar cells applications[J]. Macromolecules, 2007, 40(1):65-72. |
[107] | HENCKENS A, COLLADET K, FOURIER S, et al. Synthesis of 3, 4-diphenyl-substituted poly(thienylene vinylene), low-band-gap polymers via the dithiocarbamate route[J]. Macromolecules, 2005, 38(1):19-26. |
[108] | VANDERZANDE D, LUTSEN L, HENCKENS A, et al. Method of preparing derivatives of polyarylene vinylene and method of preparing an electronic device including same[S]. Google Patents, 2010. |
[109] | THOMPSON B C, KIM Y G, REYNOLDS J R. Spectral broadening in MEH-PPV:PCBM-based photovoltaic devices via blending with a narrow band gap cyanovinylene-dioxythiophene polymer[J]. Macromolecules, 2005, 38(13):5359-5362. |
[110] | THOMPSON B C, KIM Y G, MCCARLEY T D, et al. Soluble narrow band gap and blue propylenedioxythiophene-cyanovinylene polymers as multifunctional materials for photovoltaic and electrochromic applications[J]. Journal of the American Chemical Society, 2006, 128(39):12714-12725. |
[111] | GALAND E M, KIM Y G, MWAURA J K, et al. Optimization of narrow band-gap propylenedioxythiophene:cyanovinylene copolymers for optoelectronic applications[J]. Macromolecules, 2006, 39(26):9132-9142. |
[112] | HOU J, TAN Z A, YAN Y, et al. Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi (thienylenevinylene) side chains[J]. Journal of the American Chemical Society, 2006, 128(14):4911-4916. |
[113] | HOU J, HUO L, HE C, et al. Synthesis and absorption spectra of poly(3-(phenylenevinyl) thiophene)s with conjugated side chains[J]. Macromolecules, 2006, 39(2):594-603. |
[114] | LI Y, ZOU Y. Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility[J]. Advanced Materials, 2008, 20(15):2952-2958. |
[115] | HOU J, TAN Z A, HE Y, et al. Branched poly (thienylene vinylene)s with absorption spectra covering the whole visible region[J]. Macromolecules, 2006, 39(14):4657-4662. |
[116] | ZOU Y, WU W, SANG G, et al. Polythiophene derivative with phenothiazine-vinylene conjugated side chain:synthesis and its application in field-effect transistors[J]. Macromolecules, 2007, 40(20):7231-7237. |
[117] | LI Y, CAO Y, GAO J, et al. Electrochemical properties of luminescent polymers and polymer light-emitting electrochemical cells[J]. Synthetic Metals, 1999, 99(3):243-248. |
[118] | HOU J, CHEN H Y, ZHANG S, et al. Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2, 1, 3-benzothiadiazole[J]. Journal of the American Chemical Society, 2008, 130(48):16144-16145. |
[119] | SHI C, YAO Y, YANG Y, et al. Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application[J]. Journal of the American Chemical Society, 2006, 128(27):8980-8986. |
[120] | SVENSSON M, ZHANG F, VEENSTRA S C, et al. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative[J]. Advanced Materials, 2003, 15(12):988-991. |
[121] | VELDMAN D, IPEK O, MESKERS S C, et al. Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends[J]. Journal of the American Chemical Society, 2008, 130(24):7721-7735. |
[122] | YANG R, TIAN R, YAN J, et al. Deep-red electro-luminescent polymers:synthesis and characterization of new low-band-gap conjugated copolymers for light-emitting diodes and photovoltaic devices[J]. Macromolecules, 2005, 38(2):244-253. |
[123] | YANG J, JIANG C, ZHANG Y, et al. High-efficiency saturated red emitting polymers derived from fluorene and naphthoselenadiazole[J]. Macromolecules, 2004, 37(4):1211-1218. |
[124] | YANG R, TIAN R, HOU Q, et al. Synthesis and optical and electroluminescent properties of novel conjugated copolymers derived from fluorene and benzoselenadiazole[J]. Macromolecules, 2003, 36(20):7453-7460. |
[125] | LI X, ZENG W, ZHANG Y, et al. Synthesis and properties of novel poly (p-phenylenevinylene) copolymers for near-infrared emitting diodes[J]. European Polymer Journal, 2005, 41(12):2923-2933. |
[126] | ZHOU Q, HOU Q, ZHENG L, et al. Fluorene-based low band-gap copolymers for high performance photovoltaic devices[J]. Applied Physics Letters, 2004, 84(10):1653-1655. |
[127] | ZHANG F, PERZON E, WANG X, et al. Polymer solar cells based on a low-bandgap fluorene copolymer and a fullerene derivative with photocurrent extended to 850 nm[J]. Advanced Functional Materials, 2005, 15(5):745-750. |
[128] | WANG X, PERZON E, DELGADO J L, et al. Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative[J]. Applied Physics Letters, 2004, 85(21):5081-5083. |
[129] | WANG X, PERZON E, OSWALD F, et al. Enhanced photocurrent spectral response in low-bandgap polyfluorene and C70-derivative-based solar cells[J]. Advanced Functional Materials, 2005, 15(10):1665-1670. |
[130] | LECLERC N, MICHAUD A, SIROIS K, et al. Synthesis of 2,7-carbazolenevinylene-based copolymers and charac-terization of their photovoltaic properties[J]. Advanced Functional Materials, 2006, 16(13):1694-1704. |
[131] | LI J, DIERSCHKE F, WU J, et al. Poly (2,7-carbazole) and perylene tetracarboxydiimide:a promising donor/acceptor pair for polymer solar cells[J]. Journal of Materials Chemistry, 2006, 16(1):96-100. |
[132] | WAKIM S, BLOUIN N, GINGRAS E, et al. Poly (2,7-carbazole) derivatives as semiconductors for organic thin-film transistors[J]. Macromolecular Rapid Communi-cations, 2007, 28(17):1798-1803. |
[133] | DROLET N, MORIN J F, LECLERC N, et al. 2,7-Carbazolenevinylene-based oligomer thin-film transistors:high mobility through structural ordering[J]. Advanced Functional Materials, 2005, 15(10):1671-1682. |
[134] | BLOUIN N, MICHAUD A, LECLERC M. A low-bandgap poly (2,7-carbazole) derivative for use in high-performance solar cells[J]. Advanced Materials, 2007, 19(17):2295-2300. |
[135] | SOCI C, HWANG I W, MOSES D, et al. Photo-conductivity of a low-bandgap conjugated polymer[J]. Advanced Functional Materials, 2007, 17(4):632-636. |
[136] | MVHLBACHER D, SCHARBER M, MORANA M, et al. High photovoltaic performance of a low-bandgap polymer[J]. Advanced Materials, 2006, 18(21):2884-2889. |
[137] | ZHU Z, WALLER D, GAUDIANA R, et al. Panchro-matic conjugated polymers containing alternating donor/acceptor units for photovoltaic applications[J]. Macromolecules, 2007, 40(6):1981-1986. |
[138] | CHU T Y, LU J, BEAUPR S, et al. Bulk heterojunction solar cells using thieno[3,4-c] pyrrole-4, 6-dione and dithieno[3,2-b:2', 3'-d] silole copolymer with a power conversion efficiency of 7.3%[J]. Journal of the American Chemical Society, 2011, 133(12):4250-4253. |
[139] | http://www.sigmaaldrich.com/united-states.html. |
[140] | HU H, CUI Y. Synthesis and conductive properties of a novel azobenzene-based conjugated polymer[J]. Synthetic Metals, 2015, 205:106-111. |
[1] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[2] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[3] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[4] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[5] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[6] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[7] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[8] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[9] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[10] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[11] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[12] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[13] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[14] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[15] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||