[1] |
TAVONI M, KRIEGLER E, RIAHI K, et al. Post-2020 climate agreements in the major economies assessed in the light of global models[J]. Nat. Clim. Change, 2015, 5(2):119-126.
|
[2] |
WANG S J, FANG C L, WANG Y, et al. Quantifying the relationship between urban development intensity and carbon dioxide emissions using a panel data analysis[J]. Ecol. Indic., 2015, 49:121-131.
|
[3] |
KANECO S, KATSUMATA H, SUZUKI T, et al. Electrochemical reduction of carbon dioxide to ethylene at a copper electrode in methanol using potassium hydroxide and rubidium hydroxide supporting electrolytes[J]. Electrochim. Acta, 2006, 51(16):3316-3321.
|
[4] |
JITARU M, LOWY D A, TOMA M, et al. Electrochemical reduction of carbon dioxide on flat metallic cathodes[J]. J. Appl. Electrochem., 1997, 27(8):875-889.
|
[5] |
MISTRY H, RESKE R, ZENG Z, et al. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles[J]. J. Am. Chem. Soc., 2014, 136(47):16473-16476.
|
[6] |
DECICCIO D, AHN S T, SEN S, et al. Electrochemical reduction of CO2 with clathrate hydrate electrolytes and copper foam electrodes[J]. Electrochem. Commun., 2015, 52:13-16.
|
[7] |
OGURA K. Electrochemical reduction of carbon dioxide to ethylene:mechanistic approach[J]. J. CO2 Util., 2013, 1:43-49.
|
[8] |
ZHANG L, NIU D, ZHANG K, et al. Electrochemical activation of CO2 in ionic liquid (BMIMBF4):synthesis of organic carbonates under mild conditions[J]. Green Chem., 2008, 10(2):202-206.
|
[9] |
SALEHI-KHOJIN A, JHONG H R M, ROSEN B A, et al. Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis[J]. J. Phys. Chem. C, 2013, 117(4):1627-1632.
|
[10] |
HORI Y. Electrochemical CO2 reduction on metal electrodes[M]//Modern Aspects of Electrochemistry. New York:Springer, 2008:89-189.
|
[11] |
HATSUKADE T, KUHL K P, CAVE E R, et al. Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces[J]. Phys. Chem. Chem. Phys., 2014, 16(27):13814-13819.
|
[12] |
TORNOW C E, THORSON M R, MA S, et al. Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO[J]. J. Am. Chem. Soc., 2012, 134(48):19520-19523.
|
[13] |
ZHOU L Q, LING C, JONES M, et al. Selective CO2 reduction on a polycrystalline Ag electrode enhanced by anodization treatment[J]. Chem. Commun., 2015, 51(100):17704-17707.
|
[14] |
HE Z Q, SHEN J, NI Z L, et al. Electrochemically created roughened lead plate for electrochemical reduction of aqueous CO2[J]. Catal. Commun., 2015, 72:38-42.
|
[15] |
HE Z Q, LIU T, TANG J T, et al. Highly active, selective and stable electroreduction of carbon dioxide to carbon monoxide on a silver catalyst with truncated hexagonal bipyramidal shape[J]. Electrochim. Acta, 2016, 222:1234-1242.
|
[16] |
KOSTECKI R, AUGUSTYNSKI J. Electrochemical reduction of CO2 at an activated silver electrode[J]. Ber. Bunsen-ges. Phys. Chem., 1994, 98(12):1510-1515.
|
[17] |
CHEN Y H, LI C W, KANAN M W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles[J]. J. Am. Chem. Soc., 2012, 134(49):19969-19972.
|
[18] |
KÖLELI F, ATILAN T, PALAMUT N, et al. Electrochemical reduction of CO2 at Pb-and Sn-electrodes in a fixed-bed reactor in aqueous K2CO3 and KHCO3 media[J]. J. Appl. Electrochem., 2003, 33(5):447-450.
|
[19] |
QIU J P, TANG J T, SHEN J, et al. Preparation of a silver electrode with a three-dimensional surface and its performance in the electrochemical reduction of carbon dioxide[J]. Electrochim. Acta, 2016, 203:99-108.
|
[20] |
HSIEH Y C, SENANAYAKE S D, ZHANG Y, et al. Effect of chloride anions on the synthesis and enhanced catalytic activity of silver nanocoral electrodes for CO2 electroreduction[J]. ACS Catal., 2015, 5(9):5349-5356.
|
[21] |
LU Q, ROSEN J, ZHOU Y, et al. A selective and efficient electrocatalyst for carbon dioxide reduction[J]. Nat. Commun., 2014, 5:3242.
|
[22] |
ROBERTS F S, KUHL K P, NILSSON A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts[J]. Angew. Chem. Int. Edit., 2015, 54(17):5179-5182.
|
[23] |
XU Y H, ZHANG H, CHU C P, et al. Dechlorination of chloroacetic acids by electrocatalytic reduction using activated silver electrodes in aqueous solutions of different pH[J]. J. Electroanal. Chem., 2012, 664:39-45.
|
[24] |
JEE M S, JEON H S, KIM C, et al. Enhancement in carbon dioxide activity and stability on nanostructured silver electrode and the role of oxygen[J]. Appl. Catal. B-Environ., 2016, 180:372-378.
|
[25] |
LI C W, KANAN M W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films[J]. J. Am. Chem. Soc., 2012, 134(17):7231-7234.
|
[26] |
LU Q, ROSEN J, JIAO F. Nanostructured metallic electrocatalysts for carbon dioxide reduction[J]. ChemCatChem, 2015, 7(1):38-47.
|
[27] |
ROSEN J, HUTCHINGS G S, LU Q, et al. Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces[J]. ACS Catal., 2015, 5(7):4293-4299.
|
[28] |
FLETCHER S. Tafel slopes from first principles[J]. J. Solid State Electr., 2009, 13(4):537-549.
|
[29] |
BACK S, YEOM M S, JUNG Y. Active sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO[J]. ACS Catal., 2015, 5(9):5089-5096.
|
[30] |
HOSHI N, KATO M, HORI Y. Electrochemical reduction of CO2 on single crystal electrodes of silver Ag (111), Ag (100) and Ag (110)[J]. J. Electroanal. Chem., 1997, 440(1/2):283-286.
|
[31] |
YANO H, SHIRAI F, NAKAYAMA M, et al. Electrochemical reduction of CO2 at three-phase (gas∣liquid∣solid) and two-phase (liquid∣solid) interfaces on Ag electrodes[J]. J. Electroanal. Chem., 2002, 533(1):113-118.
|