[1] |
张晓清, 赵智敏. 基于清洁发展机制的能源可持续发展影响分析[J]. 煤炭技术, 2010, 29(9):9-10.ZHANG X Q, ZHAO Z M. Analysis of influence of energy for sustainable development based on clean development mechanism[J]. Coal Techno., 2010, 29(9):9-10.
|
[2] |
万婷, 穆道斌, 薛欢, 等. 锂离子电池锡基负极材料的研究进展[J]. 材料导报, 2010, 24(9):117-120.WAN T, MU D B, XUE H, et al. Research progress in tin-based negative electrode materials for Li-ion batteries[J]. Mater. Rev., 2010, 24(9):117-120.
|
[3] |
杜萍, 高俊奎. 锂离子电池Si基负极研究进展[J]. 电源技术, 2010, 34(4):409-412.DU P, GAO J K. Research progress of Si based anode material for Li-ion battery[J]. Chin. J. Power Sources, 2010, 34(4):409-412.
|
[4] |
KANG K S, MENG Y S, EGER J, et al. Electrodes with high power and high capacity for rechargeable lithium batteries[J]. Science, 2006, 311(5763):977-980.
|
[5] |
WU H B, PAN A Q, HNG H H, et al. Template-assisted formation of rattle-type V2O5 hollow microspheres with enhanced lithium storage properties[J]. Adv. Funct. Mater., 2013, 23(45):5669-5674.
|
[6] |
PAN A Q, WU H B, ZHANG L, et al. Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties[J]. Energ. Environ. Sci., 2013, 6(5):1476-1479.
|
[7] |
WANG Z L, XU D, WANG L M, et al. Facile and low-cost synthesis of large-area pure V2O5 nanosheets for high-capacity and high-rate lithium storage over a wide temperature range[J]. ChemPlusChem, 2012, 77(2):124-128.
|
[8] |
WANG J J, SUN X L. Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries[J]. Energ. Environ. Sci., 2012, 5(1):5163-5185.
|
[9] |
LEGER C, BACH S, PEREIRA-RAMOS J P. The sol-gel chromium-modified V6O13 as a cathodic material for lithium batteries[J]. J. Solid State Electr., 2005, 11(1):71-76.
|
[10] |
MACKLIN W J, NEAT R J, SANHU S S. Structural changes in vanadium oxide-based cathodes during cycling in a lithium polymer electrolyte cell[J]. Electrochim. Acta, 1992, 37(9):1715-1720.
|
[11] |
MURPHY D W, CHRISTIAN P A, DISALVO F J, et al. Solid state electrodes for high energy batteries[J]. Science, 1979, 205(4407):651-656.
|
[12] |
JAMES G. Lithium battery takes to water-and maybe the road[J]. Science, 1994, 264(5162):1084.
|
[13] |
CHERNOVA N A, ROPPOLO M, DILLON A C, et al. Layered vanadium and molybdenum oxides:batteries and electrochromics[J]. J. Mater. Chem., 2009, 19(17):2526-2552.
|
[14] |
BAUDRIN E, SUDANT G, LARCHER D, et al. Preparation of nanotextured VO2(B) from vanadium oxide aerogels[J]. Chem. Mater., 2006, 18(18):4369-4374.
|
[15] |
ZHANG S D, LI Y M, WU C Z, et al. Novel flowerlike metastable vanadium dioxide(B) micronanostructures:facile synthesis and application in aqueous lithium ion batteries[J]. J. Phys. Chem. C, 2009, 113(33):15058-15067.
|
[16] |
ZHAO Q Q, JIAO L F, PENG W X, et al. Facile synthesis of VO2(B)/carbon nanobelts with high capacity and good cyclability[J]. J. Power Sources, 2012, 199:350-354.
|
[17] |
程浩. 钒氧化物正极材料的制备、掺杂及其电化学性能研究[D]. 桂林:桂林理工大学, 2014.CHENG H. Study on synthesis, doping and property of vandium oxide as cathode materials[D]. Guilin:Guilin University of Technology, 2014.
|
[18] |
詹世英. 掺杂V2O5正极材料的合成及电化学性质表征[D]. 长春:吉林大学, 2010.ZHAN S Y. Synthesis and electrochemical properties of metal doped V2O5 cathode material for Li-ion batteries[D]. Changchun:Jilin University, 2010.
|
[19] |
颜泽宇, 邹正光, 龙飞, 等. Cr掺杂V6O13正极材料的合成及电化学性能研究[J]. 人工晶体学报, 2015, 44(8):1-8.YAN Z Y, ZOU Z G, LONG F, et al. Synthesis and electrochemical properties of Cr doped V6O13 cathode materials for Li-ion batteries[J]. J. Synthetic Cryst., 2015, 44(8):1-8.
|
[20] |
LIU B P, TERANO M. Investigation of the physico-chemical state and aggregation mechanism of surface Cr species on a Phillips CrOx/SiO2 catalyst by XPS and EPMA[J]. J. Mol. Catal. A-Chem., 2001, 172(1/2):227-240.
|
[21] |
STINBERGER R, DUCHOSLAV J, GREUNZ T, et al. Investigation of the chemical stability of different Cr(Ⅵ) based compounds during regular X-ray photoelectron spectroscopy measurements[J]. Corros. Sci., 2015, 90:562-571.
|
[22] |
PONZIO E A, BENEDETTI T M, TORRESI R M. Electrochemical and morphological stabilization of V2O5 nanofibers by the addition of polyaniline[J]. Electrochim. Acta, 2007, 52(13):4419-4427.
|
[23] |
SEDIRI F, GHARBI N. Nanorod B phase VO2 obtained by using benzylamine as a reducing agent[J]. Mat. Sci. Eng. B-Solid, 2007, 139(1):114-117.
|
[24] |
VENKATESAN A, CHANDAR N K, ARJUNAN S, et al. Structural, morphological and optical properties of highly monodispersed PEG capped V2O5 nanoparticles synthesized through a non-aqueous route[J]. Mater. Lett., 2013, 91:228-231.
|
[25] |
MJEJRI I, ETTEYEB N, SEDIRI F. Mesoporous vanadium oxide nanostructures:hydrothermal synthesis, optical and electrochemical properties[J]. Ceram. Int., 2014, 40(1):1387-1397.
|
[26] |
LIANG S Q, YU Y, CHEN T, et al. Facile synthesis of rod-like Ag0.33V2O5 crystallites with enhanced cyclic stability for lithium batteries[J]. Mater. Lett., 2013, 109:92-95.
|
[27] |
PIFFARD Y, LEROUX F, GUYOMARD D, et al. The amorphous oxides MnV2O6+δ (0 δ 68(2):698-703.
|
[28] |
HU F, ZHANG C H, ZHANG S, et al. Electrochemical cycled structure of MnV2O6 nanoribbons synthesized via hydrothermal route[J]. Chem. Res. Chinese U., 2011, 27(3):528-530.
|