化工学报 ›› 2017, Vol. 68 ›› Issue (5): 1757-1766.DOI: 10.11949/j.issn.0438-1157.20161736

• 热力学 • 上一篇    下一篇

PAMAM树状大分子负载和释放阿霉素的耗散粒子动力学模拟

苏运祥, 全学波, 闵文凤, 乔来聪, 李理波, 周健   

  1. 华南理工大学化学与化工学院, 广东省绿色化学产品技术重点实验室, 广东 广州 510640
  • 收稿日期:2016-12-12 修回日期:2017-02-15 出版日期:2017-05-05 发布日期:2017-05-05
  • 通讯作者: 周健
  • 基金资助:

    国家自然科学基金项目(91334202,21376089);国家重点基础研究发展计划项目(2013CB733500);广东省自然科学基金项目(2014A030312007);中央高校基本科研业务费项目(SCUT-2015ZP033)。

Dissipative particle dynamics simulations on loading and release of doxorubicin by PAMAM dendrimers

SU Yunxiang, QUAN Xuebo, MIN Wenfeng, QIAO Laicong, LI Libo, ZHOU Jian   

  1. School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2016-12-12 Revised:2017-02-15 Online:2017-05-05 Published:2017-05-05
  • Supported by:

    supported by the National Natural Science Foundation of China(91334202, 21376089), the National Basic Research Program of China(2013CB733500), the Natural Science Foundation of Guangdong Province(2014A030312007) and the Fundamental Research Founds for the Central Universities (SCUT-2015ZP033).

摘要:

采用耗散粒子动力学模拟方法研究了药物输送载体聚酰胺-胺(PAMAM)树状大分子对抗癌药物阿霉素(DOX)的负载和释放行为。构建了PAMAM树状大分子的粗粒化模型,该模型能准确地重现树状大分子的构象性质。考察了PAMAM树状大分子代数(G)对DOX负载以及pH环境对DOX释放的影响。模拟结果表明,PAMAM树状大分子主要通过疏水作用将DOX包封于内部空腔,G6和G7 PAMAM树状大分子的负载能力较强,因为其孔隙率较高,内部有更多的疏水空腔。在低pH环境下,PAMAM树状大分子结构发生变化,DOX分子能快速地从其中释放,主要原因是PAMAM的伯胺、叔胺和DOX伯胺发生质子化,质子化基团间的静电排斥作用使得PAMAM树状大分子发生溶胀,导致其内部空腔暴露,促进了DOX的释放。本工作可以为基于树状大分子的药物输送体系的设计和优化提供参考。

关键词: 药物输送, 树状大分子, 包封, 模型, 介尺度, 分子模拟

Abstract:

Dissipative particle dynamics (DPD) simulations were employed to study the loading and release behaviors of anticancer drug doxorubicin (DOX) by drug delivery carrier polyamidoamine (PAMAM) dendrimers. A coarse-grained (CG) model for PAMAM dendrimers was first constructed, which reproduced the conformational properties of PAMAM dendrimers accurately. The effects of PAMAM dendrimer generation (G) on DOX loading and the environment pH on DOX release were investigated. Simulation results showed that PAMAM dendrimers mainly encapsulated DOX into their interior cavities through hydrophobic interaction. The encapsulation capacity of G6 and G7 PAMAM dendrimers were much better than PAMAM of lower generations, because there were more hydrophobic cavities inside G6 or G7 dendrimers for their high porosity. At low pH, PAMAM dendrimers underwent conformational changes, thus DOX molecule escaped from dendrimers quickly. Such phenomena are mainly caused by the protonation of primary amines and tertiary amines in PAMAM dendrimers and primary amines in DOX. The electrostatic repulsion between these charged groups will lead PAMAM dendrimers swelling immensely and the inner cavities being exposed, which promotes the release of DOX molecules. This work could provide useful guidance for the design and optimization of dendrimer-based drug delivery systems

Key words: drug delivery, dendrimer, encapsulation, model, mesoscale, molecular simulation

中图分类号: