[1] |
YUAN H J, ZHANG C L, HUO W T, et al. Selective hydrogenation of maleic anhydride over Pd/Al2O3 catalysts prepared via colloid deposition[J]. Chem. Sci., 2014, 126: 141-145.
|
[2] |
HUANG Y Q, MA Y, CHENG Y W. Active ruthenium catalysts prepared by Cacumen Platycladi leaf extract for selective hydrogenation of maleic anhydride[J]. Applied Catalysis A: General, 2015, 495: 124-130.
|
[3] |
YANG Y, WANG C Z, YUN G. Gas-phase hydrogenation of maleic Anhydride to γ-butyrolactone over Cu-CeO2-Al2O3 catalyst at atmospheric pressure: effects of the residual sodium and water in the catalyst precursor[J]. Journal of Molecular Catalysis A: Chemica, 2014, 395: 392-397.
|
[4] |
ZHANG B, ZHU Y L, DING G Q. Modification of the supported Cu/SiO2 catalyst by alkaline earth metals in the selective conversion of 1, 4-butanediol to γ-butyrolactone[J]. Applied Catalysis A: General, 2012, 443/444: 191-201
|
[5] |
GAO D Z, YIN H B, WANG A L, et al. Gas phase dehydrogenation of ethanol using maleic anhydride as hydrogen acceptor over Cu/hydroxylapatite, Cu/SBA-15, and Cu/MCM-41 catalysts[J]. Journal of Industrial and Engineering Chemistry, 2015, 26: 322-332.
|
[6] |
REGENHARDT S A, MEYER C I, GARETTO T F, et al. Selective gas phase hydrogenation of maleic anhydride over Ni-supported catalysts: effect of support on the catalytic performance[J]. Applied Catalysis A: General, 2012, 449: 81-87.
|
[7] |
HUO W T, ZHANG C L, YUAN H J, et al. Vapor-phaseselective hydrogenation of maleic anhydride to succinic anhydride over Ni/TiO2 catalysts[J]. Journal of Industrial and Engineering Chemistry, 2014, 20: 4140-4145.
|
[8] |
张因, 赵丽丽, 张鸿喜, 等. 载体对镍基催化剂顺酐液相加氢性能的影响[J]. 化工学报, 2015, 66(7): 2505-2513.
|
|
ZHANG Y, ZHAO L L, ZHANG H X, et al. Effect of support on catalytic performance of nickel-based catalysts used for liquid phase hydrogenation of maleic anhydride [J]. CIESC Journal, 2015, 66(7): 2505-2513.
|
[9] |
ZHANG D Z, YIN H B, XUE J J, et al. Selective hydrogenation of maleic anhydride to tetrahydrofuran over Cu-Zn-M (M = Al, Ti, Zr) catalysts using ethanol as a solvent[J]. Ind. Chem. Res., 2009, 48: 11220-11224.
|
[10] |
ZHANG X H, SU H Q, YANG X Z. Catalytic performance of a three-dimensionally ordered macroporous Co/ZrO2 catalyst in Fischer-Tropsch synthesis[J]. Journal of Molecular Catalysis A: Chemical, 2012, 360: 16-25.
|
[11] |
林明桂, 杨成, 李文怀. 锰和镧改性 Cu/ZrO2合成甲醇催化剂的结构及催化性能[J].催化学报, 2004, 25(7): 591-595.
|
|
LIU M G, YANG C, LI W H. Structure and catalytic performance of Mn-and La-modified Cu/ZrO2 catalysts for methanol synthesis[J]. Chinese Journal of Catalysis, 2004, 25(7): 591-595.
|
[12] |
张颜鑫. ZrO2晶型对M/ZrO2催化剂顺酐液相加氢性能的影响[D]. 太原: 山西大学, 2013.
|
|
ZHANG Y X. Effect of ZrO2 polymorphs on catalytic performance of Ni/ZrO2 catalyst for liquid phase hydrogenation of maleic anhydride[D]. Taiyuan: Shanxi University, 2013.
|
[13] |
LI S, LI M S, ZHANG C X, et al. Steam reforming of ethanol over Ni/ZrO2 catalysts: effect of support on product distribution[J]. Hydrogen Energy, 2011, (1): 1-10
|
[14] |
张鑫, 徐柏庆. Au/ZrO2催化 CO 氧化反应中 ZrO2纳米粒子的尺寸效应[J]. 化学学报, 2005, (1): 86-90.
|
|
ZHANG X, XU B Q. Nano-size effect of zirconia in Au/ZrO2 catalyst for CO oxidation[J]. Acta Chimica Sinica, 2005, (1): 86-90.
|
[15] |
张鑫, 徐柏庆. Au/ZrO2 催化剂中 ZrO2的尺寸效应: 1, 3-丁二烯加氢反应[J]. 高等学校化学学报, 2005, (1): 106-110.
|
|
ZHANG X, XU B Q. Size effect of zirconia nanoparticles in Au/ZrO2 catalysts for 1, 3-butadiene hydrogenation[J]. Chemical Journal of Chinese Universities, 2005, (1): 106-110.
|
[16] |
TAKANO H, SHINOMIYA H, IZUMIYA K, et al. CO2 methanation of Ni catalysts supported on tetragonal ZrO2 doped with Ca2+ and Ni2+ ions[J]. International Journal of Hydrogen Energy, 2015, 40: 8347-8355.
|
[17] |
LI W Z, ZHAO Z K, DING F S. syngas production via steam-CO2 dual reforming of methane over La-Ni/ZrO2 catalyst prepared by L-arginine ligand-assisted strategy: enhanced activity and stability[J]. ACS Sustainable Chem. Eng., 2015, 3: 3461-3476.
|
[18] |
李为臻, 刘海超. 溶剂热法合成纯单斜和四方晶相氧化锆中的溶剂效应[J]. 物理化学学报, 2008, 24(12): 2172-2178.
|
|
LI W Z, LIU H C. Solvent effects on the solvothermal of pure monoclinic and tetragonal zirconia nanoparticles[J]. Acta Physico-Chimica Sinica, 2008, 24(12): 2172-2178.
|
[19] |
REGENHARDT S A, MEYER C I, GARETTO T F, et al. Selective gas phase hydrogenation of maleic anhydride over Ni-supported catalysts: effect of support on the catalytic performance[J]. Applied Catalysis A: General, 2012, 449: 81-87.
|
[20] |
GAO C, ZHAO Y, ZHANG Y, et al. Synthesis characterization and catalytic evaluation of Ni/ZrO2-SiO2 aerogels catalysts[J]. J. Sol-Gel Sci. Technol., 2007, 44: 145-151.
|
[21] |
MERCY C I, REGENHARDT S A, MARCHI A J. Gas phase hydrogenation of maleic anhydride at low pressure over silica-supported cobalt and nickel catalysts[J]. Applied Catalysis A: General, 2012, 417/418: 59-65.
|
[22] |
孟志宇, 张因, 赵丽丽, 等. 不同晶型TiO2负载镍催化剂催化顺酐液相加氢[J]. 高等学校化学学报, 2015, 36(9): 1779-1785.
|
|
MENG Z Y, ZHANG Y, ZHAO L L, et al. Liquid phase hydrogenation of maleic anhydride over Ni/TiO2 catalysts with different TiO2 polymorphs[J]. Chemical Journal of Chinese Universities, 2015, 36(9): 1779-1785.
|
[23] |
FORAITA S, FULTON J L, CHASE Z A. Impact of the oxygen defects and the hydrogen concentration on the surface of tetragonal and monoclinic ZrO2 on the reduction rates of stearic acid on Ni/ZrO2[J]. Chem. Eur. J., 2015, 21: 2423-2434.
|
[24] |
ZHANG X P, ZHANG Q, TSUBAKI N S. Carbon dioxide reforming of methane over Ni nanoparticles incorporated into mesoporous amorphous ZrO2 matrix[J]. Fuel, 2015, 147: 243-252.
|
[25] |
WANG Q, CHENG H, LIU R, et al. Influence of metal particle size on the hydrogenation of maleic anhydride over Pd/C catalysts in scCO2[J]. Catalysis Today, 2009, 148: 368-372.
|
[26] |
PILLAI U R, YOUNG D. Maleic anhydride hydrogenation over Pd/Al2O3 catalyst under supercritical CO2 medium[J]. Applied Catalysis B: Environmental, 2003, 43: 131-138.
|
[27] |
JASIK A, WOJCIESZAK R, et al. Study of nickel catalysts supported on Al2O3, SiO2 or Nb2O5 oxides[J]. Journal of Molecular Catalysis A: Chemical, 2005, 242: 81-90.
|
[28] |
WU W H, XU J, OHNISHI R. Complete hydrode chlorination of chlorobenzene and its derivatives over supported nickel catalysts under liquid phase conditions[J]. Applied Catalysis B: Environmental, 2005, 60: 129-137.
|
[29] |
盖媛媛, 李杨, 张因, 等. 载体制备方法对Ni/TiO2 催化剂顺酐液相加氢性能的影响[J]. 工业催化, 2014, 22(2): 107-113.
|
|
GE Y Y, LI Y, ZHANG Y, et al. Effect of preparation methods of supports on catalytic performance of Ni/TiO2 catalysts for liquid phase hydrogenation of maleic anhydride[J]. Industrial Catalysis, 2014, 22(2): 107-113.
|
[30] |
WANG N, QIAN W Z, CHU W. Crystal-plane effect of nanoscale CeO2 on the catalytic performance of Ni/CeO2 catalysts for methane dry reforming[J]. Catal. Sci. Technol., 2016, 6(10): 3594-3605.
|
[31] |
HARUTA M, TSUBOTA S, KOBAYASHI T, et al. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4[J]. Journal of Catalysis, 1993, 144(1): 175-192.
|
[32] |
KUNG H H, KUNG M C, COSTELLO C K. Supported Au catalysts for low temperature CO oxidation[J]. Journal of Catalysis, 2003, 216(1/2): 425-432.
|
[33] |
KUN I, SZOLLOSI G, BARTOK M. Crotonaldehyde hydrogenation over clay-supported platinum catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2001, 169: 235-246.
|
[34] |
孙翠芝, 周仁贤. 乙醇水溶剂体系中Pt-CoZrO2催化剂上肉桂醛的选择加氢性能[J]. 高等学校化学学报. 2011, 32(7): 1551-1555.
|
|
SUN C Z, ZHOU R X. Slective hydrogenation of cinnamaldehyde over Pt-CoZrO2 catalyst in the solvent system of ethanol/water[J]. Chemical Journal of Chinese Universities, 2011, 32(7): 1551-1555.
|
[35] |
刘洪磊, 袁茂林, 郭彩虹, 等. Ru/ZrO2×xH2O催化剂催化肉桂醛选择性加氢制肉桂醇[J]. 催化学报, 2011, 32(7): 1256-1261.
|
|
LIU H L, YUAN M L, GUO C H, et al. Slective hydrogenation of cinnamaldehyde to cinnamyl alcohol over Ru/ZrO2×xH2O catalyst[J]. Chinese Journal of Catalysis, 2011, 32(7): 1256-1261.
|