[1] |
NOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.
|
[2] |
GEIM A K,NOVOSELOV K S. The rise of graphene[J]. Nature Materials,2007,6:183-191.
|
[3] |
REINA A,JIA X T,HO J,et al. Large-area few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Letters,2009,9(1):30-35.
|
[4] |
OBRAZTSOV A N. Chemical vapour deposition:making graphene on a large scale[J]. Nature Nanotechnology,2009,4:212-213.
|
[5] |
GAO L,GUEST J R,GUISINGER N P,et al. Epitaxial graphene on Cu (111)[J]. Nano Letters,2010,10(9):3512-3516.
|
[6] |
CHEN Z P,REN W C,LIU B L,et al. Bulk growth of mono-to few-layer graphene on nickel particles by chemical vapor deposition from methane[J]. Carbon,2010,48(12):3543-3550.
|
[7] |
SUTTER P W,FLEGE J I,SUTTER E A, et al. Epitaxial graphene on ruthenium[J]. Nature Materials,2008,7(5):406-411.
|
[8] |
UETA H,SAIDA M,NAKAI C,et al. Highly oriented monolayer graphite formation on Pt (111) by a supersonic methane beam[J]. Surface Science,2004,560(1):183-190.
|
[9] |
CORAUX J,NDIAYE A T,BUSSE C,et al. Structural coherency of graphene on Ir(111)[J]. Nano Letters. 2008,8(2):565-570.
|
[10] |
BAE S,KIM H,LEE Y,et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology,2010,5:574-578.
|
[11] |
MICHON A,VEZIAN S,OUERGHI A,et al. Direct growth of few-layer graphene on 6 H-SiC and 3C-SiC/Si via propane chemical vapor deposition[J]. Applied Physics Letters,2010,97:171909.
|
[12] |
HWANG J,SHIELDS V B,THOMAS C,et al. Epitaxial growth of graphitic carbon on C-face SiC and sapphire by chemical vapor deposition (CVD)[J]. Journal of Crystal Growth,2010,312(21):3219-3224.
|
[13] |
STRUPINSKI W,GRODECKI K,WYSMOLEK A,et al. Graphene epitaxy by chemical vapor deposition on SiC[J]. Nano Letters,2011,11:1786-1791.
|
[14] |
李利民,唐军,康朝阳,等. Si(111)衬底上多层石墨烯薄膜的外延生长[J]. 无机材料学报,2011,26(5):472-476. LI L M,TANG J,KANG C Y,et al. Epitaxial growth of multi-layer graphene on the substrate of Si(111)[J]. Journal of Inorganic Materials,2011,26(5):472-476.
|
[15] |
唐军,康朝阳,李利民,等. 具有SiC缓冲层的Si衬底上直接沉积碳原子生长石墨烯[J]. 物理化学学报,2011,27(12):2953-2959. TANG J,KANG C Y,LI L M,et al. Direct graphene growth by depositing carbon atoms on Si substrate covered by SiC buffer layers[J]. Acta Phys.-Chim. Sin.,2011,27(12):2953-2959.
|
[16] |
CHEN J Y,GUO Y,WEN Y G,et al. Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates[J]. Advanced Materials,2013,25(7):992-997.
|
[17] |
MIYASAKA Y,NAKAMURA A,TEMMYO J. Graphite thin films consisting of nanograins of multilayer graphene on sapphire substrates directly grown by alcohol chemical vapor deposition[J]. Japanese Journal of Applied Physics,2011,50:04DH12.
|
[18] |
FANTON M A,ROBINSON J A,PULS C,et al. Characterization of graphene films and transistors grown on sapphire by metal-free chemical vapor deposition[J]. ACS Nano,2011,5(10):8062-8069.
|
[19] |
URBAN J M,DABROWSKI P,BINDER J, et al. Nitrogen doping of chemical vapor deposition grown graphene on 4 H-SiC(0001)[J]. Journal of Applied Physics,2014,115(23):233504.
|
[20] |
CIUK T,STRUPINSKI W. Statistics of epitaxial graphene for Hall effect sensors[J]. Carbon,2015,93:1042-1049.
|
[21] |
CAN L G,TAKAI K,ENOKI T,et al. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy[J]. Applied Physics Letters,2006,88:163106.
|
[22] |
LI J,YU C,WANG L, et al. Self-aligned graphene field-effect transistors on SiC (0001) substrates with self-oxidized gate dielectric[J]. Journal of Semiconductors,2014,35(7):074006.
|
[23] |
YAN K,PENG H L,ZHOU Y,et al. Formation of bilayer bernal graphene:layer-by-layer epitaxy via chemical vapor deposition[J]. Nano Letters,2010,11:1106-1110.
|
[24] |
SPECK F,JOBST J,FROMM F, et al. The quasi-free-standing nature of graphene on H-saturated SiC(0001)[J]. Applied Physics Letters,2011,99:122106.
|
[25] |
DIMITRAKOPOULOS C,GRILL A,MCARDLE T J,et al. Effect of SiC wafer miscut angle on the morphology and Hall mobility of epitaxially grown graphene[J]. Applied Physics Letters,2011,98:222105.
|
[26] |
BOLEN M L,COLLBY R,STANCH E A,et al. Graphene formation on step-free 4 H-SiC(0001)[J]. Journal of Applied Physics,2011,110:074307.
|
[27] |
KURAMOCHI H,ODAKA S,MORITA K,et al. Role of atomic terraces and steps in the electron transport properties of epitaxial graphene grown on SiC[J]. AIP Advances,2012,2:012115.
|
[28] |
YU C,LIU Q B,LI J,et al. Preparation and electrical transport properties of quasi free standing bilayer graphene on SiC(0001) substrate by H intercalation[J]. Applied Physics Letters,2014,105:183105.
|
[29] |
EMERY J D,WHEELER V H,JOHNS J E,et al. Structural consequences of hydrogen intercalation of epitaxial graphene on SiC(0001)[J]. Applied Physics Letters,2014,105:161602.
|
[30] |
HASSAN J,WINTERS M,IVANOV I G,et al. Quasi-free-standing monolayer and bilayer graphene growth on homoepitaxial on-axis 4 H-SiC(0001) layers[J]. Carbon,2015,82:12-23.
|