化工学报 ›› 2018, Vol. 69 ›› Issue (1): 128-140.DOI: 10.11949/j.issn.0438-1157.20171179
康垚, 王素真, 樊江莉, 彭孝军
收稿日期:
2017-08-28
修回日期:
2017-11-21
出版日期:
2018-01-05
发布日期:
2018-01-05
通讯作者:
樊江莉
基金资助:
国家自然科学基金项目(21576037,21422601,21421005);NSFC-辽宁联合基金项目(U1608222)。
KANG Yao, WANG Suzhen, FAN Jiangli, PENG Xiaojun
Received:
2017-08-28
Revised:
2017-11-21
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20171179
Supported by:
supported by the National Natural Science Foundation of China (21576037, 21422601, 21421005) and the NSFC-Liaoning United Fund (U1608222).
摘要:
纳米药物作为一种新兴技术,为肿瘤的精确定位和早期诊断、靶向、长效和联合治疗提供了重要的研发平台,为克服传统药物非特异性靶向和非选择性损伤机体组织的瓶颈问题提供了可能。近年来研究者基于量子点、纳米金、纳米介孔硅等无机纳米药物载体设计合成了大量可用于肿瘤诊疗的纳米药物,主要通过“核-壳”结构设计、表面修饰等方法提高纳米药物性能。综述了无机纳米材料作为纳米药物载体在肿瘤诊疗中的应用,详细介绍了纳米药物的设计策略和肿瘤诊疗作用机制,并对未来进行无机纳米药物在肿瘤诊疗中的临床应用进行了展望。
中图分类号:
康垚, 王素真, 樊江莉, 彭孝军. 无机纳米药物载体在肿瘤诊疗中的研究进展[J]. 化工学报, 2018, 69(1): 128-140.
KANG Yao, WANG Suzhen, FAN Jiangli, PENG Xiaojun. Progress in inorganic nanomedicine carriers for tumor diagnosis and treatments[J]. CIESC Journal, 2018, 69(1): 128-140.
[1] | EVENS A M, JOVANOVIC B D, SU Y C, et al. Rituximab-associated hepatitis B virus (HBV) reactivation in lymphoproliferative diseases:meta-analysis and examination of FDA safety reports[J]. Annals of Oncology, 2010, 22(5):1170-1180. |
[2] | YEO W, LAM K C, ZEE B, et al. Hepatitis B reactivation in patients with hepatocellular carcinoma undergoing systemic chemotherapy[J]. Annals of Oncology, 2004, 15(11):1661-1666. |
[3] | CHABNER B A, ROBERTS T G. Chemotherapy and the war on cancer[J]. Nature Reviews Cancer, 2005, 5(1):65-72. |
[4] | WIRADHARMA N, ZHANG Y, VENKATARAMAN S, et al. Self-assembled polymer nanostructures for delivery of anticancer therapeutics[J]. Nano Today, 2009, 4(4):302-317. |
[5] | FAROKHZAD O C, LANGER R. Impact of nanotechnology on drug delivery[J]. ACS Nano, 2009, 3(1):16-20. |
[6] | WICKI A, WITZIGMANN D, BALASUBRAMANIAN V, et al. Nanomedicine in cancer therapy:challenges, opportunities, and clinical applications[J]. Journal of Controlled Release, 2015, 200:138-157. |
[7] | PEER D, KARP J M, HONG S, et al. Nanocarriers as an emerging platform for cancer therapy[J]. Nature Nanotechnology, 2007, 2(12):751-760. |
[8] | HO Y P, LEONG K W. Quantum dot-based theranostics[J]. Nanoscale, 2010, 2(1):60-68. |
[9] | SANTRA S, KAITTANIS C, SANTIESTEBAN O J, et al. Cell-specific, activatable, and theranostic prodrug for dual-targeted cancer imaging and therapy[J]. Journal of the American Chemical Society, 2011, 133(41):16680-16688. |
[10] | ZHANG H, FAN J L, WANG J Y, et al. An off-on COX-2 specific fluorescent probe:targeting the golgi apparatus of cancer cells[J]. Journal of the American Chemical Society, 2013, 135(31):11663-11669. |
[11] | ZHANG H, FAN J L, WANG J Y, et al. Fluorescence discrimination of cancer from inflammation by molecular response to COX-2 enzymes[J]. Journal of the American Chemical Society, 2013, 135(46):17469-17475. |
[12] | WANG B H, FAN J L, WANG X, et al. A nile blue based infrared fluorescent probe:imaging tumors that over-express cyclooxygenase-2[J]. Chemical Communications, 2015, 51(4):792-795. |
[13] | FAN J L, GUO S G, WANG S, et al. Lighting-up breast cancer cells by a near-infrared fluorescent probe based on KIAA1363 enzyme-targeting[J]. Chemical Communications, 2017, 53(35):4857-4860. |
[14] | ZHOU J, YANG Y, ZHANG C. Toward biocompatible semiconductor quantum dots:from biosynthesis and bioconjugation to biomedical application[J]. Chemical Reviews, 2015, 115(21):11669-11717. |
[15] | VAN VEGGEL F C J M. Near-infrared quantum dots and their delicate synthesis, challenging characterization, and exciting potential applications[J]. Chemistry of Materials, 2013, 26(1):111-122. |
[16] | GUO W. Synthesis of Zn-Cu-In-S/ZnS coreshell quantum dots with inhibited blue-shift photoluminescence and applications for tumor targeted bioimaging[J]. Theranostics, 2013, 3(2):99-108. |
[17] | SASAKI A, TSUKASAKI Y, KOMATSUZAKI A, et al. Recombinant protein (EGFP-Protein G)-coated PbS quantum dots for in vitro and in vivo dual fluorescence (visible and second-NIR) imaging of breast tumors[J]. Nanoscale, 2015, 7(12):5115-5119. |
[18] | WANG S, RIEDINGER A, LI H, et al. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects[J]. ACS Nano, 2015, 9(2):1788-1800. |
[19] | FENG S, CHEN J, WO Y, et al. Real-time and long-time in vivo imaging in the shortwave infrared window of perforator vessels for more precise evaluation of flap perfusion[J]. Biomaterials, 2016, 103:256-264. |
[20] | DEL ROSAL B, CARRASCO E, REN F, et al. Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback[J]. Advanced Functional Materials, 2016, 26(33):6060-6068. |
[21] | SANTOS H D A, RUIZ D, LIFANTE G, et al. Time resolved spectroscopy of infrared emitting Ag2S nanocrystals for subcutaneous thermometry[J]. Nanoscale, 2017, 9(7):2505-2513. |
[22] | RUIZ D, DEL ROSAL B, ACEBRON M, et al. Ag/Ag2S nanocrystals for high sensitivity near-infrared luminescence nanothermometry[J]. Advanced Functional Materials, 2017, 27(6):12-15. |
[23] | MELAMED J R, RILEY R S, VALCOURT D M, et al. Using gold nanoparticles to disrupt the tumor microenvironment:an emerging therapeutic strategy[J]. ACS Nano, 2016, 10(12):10631-10635. |
[24] | LI J Y, LIU J, CHEN C Y. Remote control and modulation of cellular events by plasmonic gold nanoparticles:implications and opportunities for biomedical applications[J]. ACS Nano, 2017, 11(3):2403-2409. |
[25] | ZHOU W, GAO X, LIU D, et al. Gold nanoparticles for in vitro diagnostics[J]. Chemical Reviews, 2015, 115(19):10575-10636. |
[26] | LI N, ZHAO P, ASTRUC D. Anisotropic gold nanoparticles:synthesis, properties, applications, and toxicity[J]. Angewandte Chemie International Edition, 2014, 53(7):1756-1789. |
[27] | SUN X, HUANG X, YAN X, et al. Chelator-free 64Cu-integrated gold nanomaterials for positron emission tomography imaging guided photothermal cancer therapy[J]. ACS Nano, 2014, 8(8):8438-8446. |
[28] | SONG J, YANG X, JACOBSON O, et al. Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy[J]. ACS Nano, 2015, 9(9):9199-9209. |
[29] | CHEHELTANI R, EZZIBDEH R M, CHHOUR P, et al. Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging[J]. Biomaterials, 2016, 102:87-97. |
[30] | GE X, SONG Z M, SUN L, et al. Lanthanide (Gd3+ and 3+) functionalized gold nanoparticles for in vivo imaging and therapy[J]. Biomaterials, 2016, 108:35-43. |
[31] | FU J, LIANG L, QIU L. In situ generated gold nanoparticle hybrid polymersomes for water-soluble chemotherapeutics:inhibited leakage and pH-responsive intracellular release[J]. Advanced Functional Materials, 2017, 27(18):1604981(12). |
[32] | GAO F, SUN M, XU L, et al. Biocompatible cup-shaped nanocrystal with ultrahigh photothermal efficiency as tumor therapeutic agent[J]. Advanced Functional Materials, 2017, 27(24):1700605(6). |
[33] | CHANG Y, HE L, LI Z, et al. Designing core-shell gold and selenium nanocomposites for cancer radiochemotherapy[J]. ACS Nano, 2017, 11(5):4848-4858. |
[34] | 屈健, 田敏, 王谦, 等. 碳纳米管-水纳米流体的光热转化特性[J]. 化工学报, 2016, 67(S2):113-119. QU J, TIAN M, WANG Q, et al. Photo-thermal properties of MWCNT-H2O nanofluid[J]. CIESC Journal, 2016, 67(S2):113-119. |
[35] | YIN P T, SHAH S, CHHOWALLA M, et al. Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications[J]. Chemical Reviews, 2015, 115(7):2483-2531. |
[36] | GEORGAKILAS V, TIWARI J N, KEMP K C, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications[J]. Chemical Reviews, 2016, 116(9):5464-5519. |
[37] | LIANG C, DIAO S, WANG C, et al. Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes[J]. Advanced Materials, 2014, 26(32):5646-5652. |
[38] | LIU J, WANG C, WANG X, et al. Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy[J]. Advanced Functional Materials, 2015, 25(3):384-392. |
[39] | XIE L S, WANG G H, ZHOU H, et al. Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy[J]. Biomaterials, 2016, 103:219-228. |
[40] | KALLURU P, VANKAYALA R, CHIANG C S, et al. Nano-graphene oxide-mediated in vivo fluorescence imaging and bimodal photodynamic and photothermal destruction of tumors[J]. Biomaterials, 2016, 95:1-10. |
[41] | KANG S, LEE J, RYU S, et al. Gold nanoparticle graphene oxide hybrid sheets attached on mesenchymal stem cells for effective photothermal cancer therapy[J]. Chemistry of Materials, 2017, 29(8):3461-3476. |
[42] | WANG S, LIN Q J, CHEN J T, et al. Biocompatible polydopamine-encapsulated gadolinium-loaded carbon nanotubes for MRI and color mapping guided photothermal dissection of tumor metastasis[J]. Carbon, 2017, 112:53-62. |
[43] | 罗运晖, 乐恺, 赵凌云, 等. 交变磁场中Fe3O4磁流体对肿瘤组织加热作用的理论研究[J]. 化工学报, 2009, 60(4):833-839. LUO Y H, YUE K, ZHAO L Y, et al. Theoretical study on heating effect of Fe3O4 magnetic fluid on tumor tissues in alternating magnetic field[J]. CIESC Journal, 2009, 60(4):833-839. |
[44] | 胡平, 常恬, 陈震宇, 等. 纳米Fe3O4磁性颗粒表面改性及其在医学和环保领域的应用[J]. 化工学报, 2017, 68(7):2641-2652. HU P, CHANG T, CHEN Z Y, et al. Surface modification and application in biomedicine and environmental protection of magnetic Fe3O4 nanoparticles[J]. CIESC Journal, 2017, 68(7):2641-2652. |
[45] | LAURENT S, FORGE D, PORT M, et al. Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications[J]. Chemical Reviews, 2008, 108(6):2064-2110. |
[46] | LEE N, YOO D, LING D, et al. Iron oxide based nanoparticles for multimodal imaging and magneto responsive therapy[J]. Chemical Reviews, 2015, 115(19):10637-10689. |
[47] | LI J C, ZHENG L F, CAI H D, et al. Polyethylene imine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging[J]. Biomaterials, 2013, 34(33):8382-8392. |
[48] | ZHANG Y, SHEN T T, DENG X, et al. Design of a versatile nanocomposite for ‘seeing’ drug release and action behavior[J]. Journal of Materials Chemistry B, 2015, 3(43):8449-8458. |
[49] | TSENG S J, HUANG K Y, KEMPSON I M, et al. Remote control of light-triggered virotherapy[J]. ACS Nano, 2016, 10(11):10339-10346. |
[50] | YUAN Y, DING Z L, QIAN J C, et al. Casp3/7-instructed intracellular aggregation of Fe3O4 nanoparticles enhances T2 MR imaging of tumor apoptosis[J]. Nano Letters, 2016, 16(4):2686-2691. |
[51] | GUO R R, TIAN Y, WANG Y J, et al. Near-infrared laser-triggered nitric oxide nanogenerators for the reversal of multidrug resistance in cancer[J]. Advanced Functional Materials, 2017, 27(13):1606398(8). |
[52] | YANG C L, CHEN J P, WEI K, et al. Release of doxorubicin by a folate-grafted, chitosan-coated magnetic nanoparticle[J]. Nanomaterials, 2017, 7(4):85-91. |
[53] | ZHANG K, XU H X, JIA X Q, et al. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor[J]. ACS Nano, 2016, 10(12):10816-10828. |
[54] | LUO G F, CHEN W H, LEI Q, et al. A triple-collaborative strategy for high-performance tumor therapy by multifunctional mesoporous silica-coated gold nanorods[J]. Advanced Functional Materials, 2016, 26(24):4339-4350. |
[55] | LIM E K, KIM T, PAIK S, et al. Nanomaterials for theranostics:recent advances and future challenges[J]. Chemical Reviews, 2014, 115(1):327-394. |
[56] | WANG X, FENG J I, BAI Y, et al. Synthesis, properties, and applications of hollow micro-/nanostructures[J]. Chemical Reviews, 2016, 116(18):10983-11060. |
[57] | CHEN X, CHENG X Y, SOERIYADI A H, et al. Stimuli-responsive functionalized mesoporous silica nanoparticles for drug release in response to various biological stimuli[J]. Biomaterials Science, 2014, 2(1):121-130. |
[58] | GIMENEZ C, DE LA TORRE C, GORBE M, et al. Gated mesoporous silica nanoparticles for the controlled delivery of drugs in cancer cells[J]. Langmuir, 2015, 31(12):3753-3762. |
[59] | HWANG A A, LU J, TAMANOI F, et al. Functional nanovalves on protein-coated nanoparticles for in vitro and in vivo controlled drug delivery[J]. Small, 2015, 11(3):319-328. |
[60] | WANG Y H, SONG S Y, LIU J J, et al. ZnO-functionalized upconverting nanotheranostic agent:multi-modality imaging-guided chemotherapy with on-demand drug release triggered by pH[J]. Angewandte Chemie International Edition, 2015, 54(2):536-540. |
[61] | ZHANG K, XU H X, JIA X Q, et al. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor[J]. ACS Nano, 2016, 10(12):10816-10828. |
[62] | CHEN W H, LUO G F, QIU W X, et al. Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemotherapy[J]. Biomaterials, 2017, 117:54-65. |
[63] | CHEN F, HUANG P, ZHU Y J, et al. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods[J]. Biomaterials, 2011, 32(34):9031-9039. |
[64] | LIU M, LIU H, SUN S F, et al. Multifunctional hydroxyapatite/Na (Y/Gd) F4:3+, Er3+ composite fibers for drug delivery and dual modal imaging[J]. Langmuir, 2014, 30(4):1176-1182. |
[65] | SYAMCHAND S S, PRIYA S, SONY G. Hydroxyapatite nanocrystals dually doped with fluorescent and paramagnetic labels for bimodal (luminomagnetic) cell imaging[J]. Microchimica Acta, 2015, 182(5):1213-1221. |
[66] | LI D L, HE J M, HUANG X, et al. Intracellular pH-responsive mesoporous hydroxyapatite nanoparticles for targeted release of anticancer drug[J]. RSC Advances, 2015, 5(39):30920-30928. |
[67] | HAO X H, HU XX, ZHANG C M, et al. Hybrid mesoporous silica-based drug carrier nanostructures with improved degradability by hydroxyapatite[J]. ACS Nano, 2015, 9(10):9614-9625. |
[68] | WANG Y F, WANG J L, HAO H, et al. In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles[J]. ACS Nano, 2016, 10(11):9927-9937. |
[69] | LYBAERT L, RYU K A, NUHN L, et al. Cancer cell lysate entrapment in CaCO3 engineered with polymeric TLR-agonists:immune-modulating microparticles in view of personalized antitumor vaccination[J]. Chemistry of Materials, 2017, 29(10):4209-4217. W W, et al. Folic acid-conjugated superparamagnetic iron oxide nanoparticles for tumor-targeting MR imaging[J]. Drug Delivery, 2016, 23(5):1726-1733. |
[52] | YUAN Y, DING Z L, QIAN J C, et al. Casp3/7-instructed intracellular aggregation of Fe3O4 nanoparticles enhances T2 MR imaging of tumor apoptosis[J]. Nano Letters, 2016, 16(4):2686-2691. |
[53] | GUO RR, TIAN Y, WANG Y J, et al. Near-infrared laser-triggered nitric oxide nanogenerators for the reversal of multidrug resistance in cancer[J]. Advanced Functional Materials, 27(13):1606398(8). |
[54] | YANG C L, CHEN J P, WEI K, et al. Release of doxorubicin by a folate-grafted, chitosan-coated magnetic nanoparticle[J]. Nanomaterials, 2017, 7(4):85-91. |
[55] | ZHANG K, XU H X, JIA X Q, et al. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor[J]. ACS Nano, 2016, 10(12):10816-10828. |
[56] | LUO G F, CHEN W H, LEI Q, et al. A triple-collaborative strategy for high-performance tumor therapy by multifunctional mesoporous silica-coated gold nanorods[J]. Advanced Functional Materials, 2016, 26(24):4339-4350. |
[57] | LIM E K, KIM T, PAIK S, et al. Nanomaterials for theranostics:recent advances and future challenges[J]. Chemical reviews, 2014, 115(1):327-394. |
[58] | WANG X, FENG J I, BAI Y, et al. Synthesis, properties, and applications of hollow micro-/nanostructures[J]. Chemical reviews, 2016, 116(18):10983-11060. |
[59] | CHEN X, CHENG X Y, SOERIYADI A H, et al. Stimuli-responsive functionalized mesoporous silica nanoparticles for drug release in response to various biological stimuli[J]. Biomaterials Science, 2014, 2(1):121-130. |
[60] | GIMENEZ C, DE LA TORRE C, GORBE M, et al. Gated mesoporous silica nanoparticles for the controlled delivery of drugs in cancer cells[J]. Langmuir, 2015, 31(12):3753-3762. |
[61] | HWANG A A, LU J, TAMANOI F, et al. Functional nanovalves on protein-coated nanoparticles for in vitro and in vivo controlled drug delivery[J]. Small, 2015, 11(3):319-328. |
[62] | WANG Y H, SONG S Y, LIU J J, et al. ZnO-functionalized upconverting nanotheranostic agent:multi-modality imaging-guided chemotherapy with on-demand drug release triggered by pH[J]. Angewandte Chemie International Edition, 2015, 54(2):536-540. |
[63] | ZHANG K, XU H X, JIA X Q, et al. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor[J]. ACS Nano, 2016, 10(12):10816-10828. |
[64] | CHEN W H, LUO G F, QIU W X, et al. Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemotherapy[J]. Biomaterials, 2017, 117:54-65. |
[65] | CHEN F, HUANG P, ZHU Y J, et al. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods[J]. Biomaterials, 2011, 32(34):9031-9039. |
[66] | LIU M, LIU H, SUN S F, et al. Multifunctional hydroxyapatite/Na (Y/Gd) F4:Yb3+,Er3+ composite fibers for drug delivery and dual modal imaging[J]. Langmuir, 2014, 30(4):1176-1182. |
[67] | SYAMCHAND S S, PRIYA S, SONY G. Hydroxyapatite nanocrystals dually doped with fluorescent and paramagnetic labels for bimodal (luminomagnetic) cell imaging[J]. Microchimica Acta, 2015, 182(5):1213-1221. |
[68] | LI D L, HE J M, HUANG X, et al. Intracellular pH-responsive mesoporous hydroxyapatite nanoparticles for targeted release of anticancer drug[J]. RSC Advances, 2015, 5(39):30920-30928. |
[69] | HAO X H, HU XX, ZHANG C M, et al. Hybrid mesoporous silica-based drug carrier nanostructures with improved degradability by hydroxyapatite[J]. ACS Nano, 2015, 9(10):9614-9625. |
[70] | WANG Y F, WANG J L, HAO H, et al. In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles[J]. ACS Nano, 2016, 10(11):9927-9937. |
[71] | LYBAERT L, RYU K A, NUHN L, et al. Cancer cell lysate entrapment in CaCO3 engineered with polymeric TLR-agonists:immune-modulating microparticles in view of personalized antitumor vaccination[J]. Chemistry of Materials, 2017, 29(10):4209-4217. |
[1] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[2] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[3] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[4] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[5] | 曲国娟, 江涛, 刘涛, 马骧. 超分子策略调控金纳米团簇的发光行为[J]. 化工学报, 2023, 74(1): 397-407. |
[6] | 黄心童, 耿宇昊, 刘恒源, 陈卓, 徐建鸿. 微流控制备新型功能纳米粒子研究进展[J]. 化工学报, 2023, 74(1): 355-364. |
[7] | 鞠小兵, 李雪纯, 孙芳. 二硫代水杨酸衍生物对光固化材料性能的影响[J]. 化工学报, 2022, 73(9): 4187-4193. |
[8] | 张炜, 李昊阳, 徐纯刚, 李小森. 气体水合物生成微观机理及分析方法研究进展[J]. 化工学报, 2022, 73(9): 3815-3827. |
[9] | 张鑫, 许蕊, 路馨语, 牛永安. SiO2@BiOCl-Bi24O31Cl10核壳微球的合成及光催化[J]. 化工学报, 2022, 73(8): 3636-3646. |
[10] | 张红锐, 张田, 隆曦孜, 李先宁. 光催化与微生物燃料电池耦合对Cu-EDTA的降解特性[J]. 化工学报, 2022, 73(5): 2149-2157. |
[11] | 张苗, 杨洪海, 尹勇, 徐悦, 沈俊杰, 卢心诚, 施伟刚, 王军. 氧化石墨烯/水脉动热管的启动及传热特性[J]. 化工学报, 2022, 73(3): 1136-1146. |
[12] | 李文祥, 王钧禾, 郝怡静, 周乐平. 淬火初温影响疏水表面沸腾传热特性的实验研究[J]. 化工学报, 2022, 73(12): 5394-5404. |
[13] | 李燕, 蹇亮, 茅沁怡, 潘成思, 蒋平平, 朱永法, 董玉明. 构建Bi2O2CO3/g-C3N4异质结光催化完全氧化苯甲醇至苯甲醛[J]. 化工学报, 2021, 72(8): 4166-4176. |
[14] | 郑龙, 田佳鑫, 张泽鹏, 郭建, 朱晖, 谢慧翔, 何润泽, 洪文晶. 多肽药物制备工艺研究进展[J]. 化工学报, 2021, 72(7): 3538-3550. |
[15] | 董晓锐, 王凯, 骆广生. 金纳米颗粒的微反应连续合成[J]. 化工学报, 2021, 72(7): 3823-3831. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||