[1] |
MURPHY J D, MCKEOGH E, KIELY G. Technical/economic/environmental analysis of biogas utilization[J]. Appl. Energy, 2004, 77(4):407-427.
|
[2] |
SRIDHAR S, AMINABHAVI M, MAYOR S J, et al. Permeation of carbon dioxide and methane gases through novel silver-incorporated thin film composite pebax membranes[J]. Ind. Eng. Chem. Res., 2007, 46(24):8144-8151.
|
[3] |
KIM M B, BAE Y S, CHOI D K, et al. Kinetic separation of landfill gas by a two-bed pressure swing adsorption process packed with carbon molecular sieve:nonisothermal operation[J]. Ind. Eng. Chem. Res., 2006, 45(14):5050-5058.
|
[4] |
BAE Y S, MULFORT K L, FROST H, et al. Separation of CO2 from CH4 using mixed-ligand metal-organic frameworks[J]. Langmuir, 2008, 24(16):8592-8598.
|
[5] |
BABARAO R, JIANG J W. Upgrade of natural gas in rho zeolite-like metal-organic framework and effect of water:a computational study[J]. Energy Environ. Sci., 2009, 2(10):1088-1093.
|
[6] |
ZHANG Z, LI Z, LI J. Computational study of adsorption and separation of CO2, CH4, and N2 by an rht-type metal-organic framework[J]. Langmuir, 2012, 28(33):12122-12133.
|
[7] |
REZK A, AL-DADAH R, MAHMOUD S, et al. Investigation of ethanol/metal organic frameworks for low temperature adsorption cooling applications[J]. Appl. Energy, 2013, 112:1025-1031.
|
[8] |
ZHANG J, BURKE N, ZHANG S, et al. Thermodynamic analysis of molecular simulations of CO2 and CH4 adsorption in FAU zeolites[J]. Chem. Eng. Sci., 2014, 113(3):54-61.
|
[9] |
HUANG H, ZHANG W, LIU D, et al. Understanding the effect of trace amount of water on CO2 capture in natural gas upgrading in metal-organic frameworks:a molecular simulation study[J]. Ind. Eng. Chem. Res., 2012, 51(30):10031-10038.
|
[10] |
ZHANG Z, HUANG S, XIAN S, et al. Adsorption equilibrium and kinetics of CO2 on chromium terephthalate MIL-101[J]. Energy & Fuels, 2011, 25(2):835-842.
|
[11] |
CHEN Y, LV D, WU J, et al. A new MOF-505@GO composite with high selectivity for CO2/CH4 and CO2/N2 separation[J]. Chemical Engineering Journal, 2016, 308(15):1065-1072.
|
[12] |
杨琰, 王莎, 张志娟, 等. 氨气改性的NH3@MIL-53(Cr)吸附CO2和CH4的性能[J]. 化工学报, 2014, 65(5):1759-1763. YANG Y, WANG S, ZHANG Z J, et al. CO2 and CH4 adsorption performance of modified MIL-53(Cr) via ammonia vapor[J]. CIESC Journal, 2014, 65(5):1759-1763.
|
[13] |
WANG Y, ZOU H, ZENG S, et al. A one-step carbonization route towards nitrogen-doped porous carbon hollow spheres with ultrahigh nitrogen content for CO2 adsorption[J]. Chem. Commun., 2015, 51(62):12423-12426.
|
[14] |
SEVILLA M, FUERTES A B. The production of carbon materials by hydrothermal carbonization of cellulose[J]. Carbon, 2009, 47(9):2281-2289.
|
[15] |
FAN X, ZHANG L, ZHANG G, et al. Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture[J]. Carbon, 2013, 61:423-430.
|
[16] |
XIAO Q, WEN J, GUO Y, et al. Synthesis, carbonization, and CO2 adsorption properties of phloroglucinol-melamine-formaldehyde polymeric nanofibers[J]. Industrial & Engineering Chemistry Research, 2016, 55(49):12667-12674.
|
[17] |
AIJAZ A, FUJIWARA N, XU Q. From metal-organic framework to nitrogen-decorated nanoporous carbons:high CO2 uptake and efficient catalytic oxygen reduction[J]. Journal of the American Chemical Society, 2014, 136(19):6790-6793.
|
[18] |
XIAN S, XU F, ZHAO Z, et al. A novel carbonized polydopamine(C-PDA) adsorbent with high CO2 adsorption capacity and water vapor resistance[J]. AIChE Journal, 2016, 62(10):3730-3738.
|
[19] |
POKRZYWINSKI J, KEUM J, RUTHER R E, et al. Unrivaled combination of surface area and pore volume in micelletemplated carbon for supercapacitor energy storage[J]. J. Mater. Chem. A, 2017, 5(26):13511-13525.
|
[20] |
HE J, TO J W F, PSARRAS P C, et al. Tunable polyaniline-based porous carbon with ultrahigh surface area for CO2 capture at elevated pressure[J]. Advanced Energy Materials, 2016, 6(14):1502491.
|
[21] |
LOZANO-CASTELLO D, CAZORLA-AMOROS D, LINARES-SOLANO A. Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons[J]. Carbon, 2004, 42(7):1233-1242.
|
[22] |
ZHANG Z, XU M, WANG H, et al. Enhancement of CO2 adsorption on high surface area activated carbon modified by N2, H2 and ammonia[J]. Chem. Eng. J., 2010, 160(2):571-577.
|
[23] |
LIU F, HUANG K, DING S, et al. One-step synthesis of nitrogen-doped graphene-like meso-macroporous carbons as highly efficient and selective adsorbents for CO2 capture[J]. J. Mater. Chem. A, 2016, 4(38):14567-14571
|
[24] |
XIA K, YU Y, LI Y, et al. Controllable synthesis of nitrogen-doped hollow carbon nanospheres with dopamine as precursor for CO2 capture[J]. RSC Adv., 2016, 6(94):91557-91561.
|
[25] |
PLAZA M G, GONZALEZ A S, PEVIDA C, et al. Valorisation of spentcoffee grounds as CO2 adsorbents for postcombustion capture applications[J]. Applied Energy, 2012, 99:272-279.
|
[26] |
CHEN B L, OCKWIG N W, MILLWARD A R, et al. High H2 adsorption in a microporous metal-organic framework with open metal sites[J]. Angew. Chem., Int. Ed., 2005, 117(30):4823-4827.
|
[27] |
TIAN W, ZHANG H, SUN H, et al. Heteroatom(N or N-S)-doping induced layered and honeycomb microstructures of porous carbons for CO2 capture and energy applications[J]. Advanced Functional Materials, 2016, 26(47):8651-8661
|
[28] |
LAU C H, BABARAO R, HILL M R. A route to drastic increase of CO2 uptake in Zr metal organic framework UiO-66[J]. Chem. Commun., 2013, 49(35):3634-3636.
|
[29] |
BANERJEE R, FURUKAWA H, BRITT D, et al. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties[J]. J. Am. Chem. Soc., 2009, 131(11):3875-3877.
|
[30] |
HOU X J, HE P, LI H, et al. Understanding the adsorption mechanism of C2H2, CO2, and CH4 in isostructural metal-organic frameworks with coordinatively unsaturated metal sites[J]. Journal of Physical Chemistry C, 2013, 117(6):2824-2834.
|
[31] |
YOON M, MOON D. New Zr(Ⅳ) based metal-organic framework comprising a sulfur-containing ligand:enhancement of CO2 and H2 storage capacity[J]. Micropor. Mesopor. Mater., 2015, 215(1):116-122.
|
[32] |
DARENSBOURG D J, CHUNG W C, WANG K, et al. Sequestering CO2 for short-term storage in MOFs:copolymer synthesis with oxiranes[J]. ACS Catal., 2014, 4(5):1511-1515.
|
[33] |
WANG X, WU Y, ZHOU X, et al. Novel C-PDA adsorbents with high uptake and preferential adsorption of ethane over ethylene[J]. Chemical Engineering Science, 2016, 155(22):338-347.
|
[34] |
SHEN D, BULOW M, SIPERSTEIN F, et al. Comparison of experimental techniques for measuring isosteric heat of adsorption[J]. Adsorption, 2000, 6(4):275-286.
|
[35] |
DUAN J, HIGUCHI M, HORIKE S, et al. High CO2/CH4 and C2 hydrocarbons/CH4 selectivity in a chemically robust porous coordination polymer[J]. Advanced Functional Materials, 2013, 23(28):3525-3530.
|
[36] |
WU Y, CHEN H, LIU D, et al. Adsorption and separation of ethane/ethylene on ZIFs with various topologies:combining GCMC simulation with the ideal adsorbed solution theory(IAST)[J]. Chem. Eng. Sci., 2015, 124(3):144-153.
|
[37] |
刘江, 吴玉芳, 许峰, 等. 温度对MOF-74(Ni)吸附分离丙烯丙烷机理和选择性的影响[J]. 化工学报, 2016, 67(5):1942-1948. LIU J, WU Y F, XU F, et al. Effects of temperature on adsorption mechanism and adsorption selectivity of C3H6 and C3H8 on MOF-74(Ni)[J]. CIESC Journal, 2016, 67(5):1942-1948.
|
[38] |
刘有毅, 黄艳, 何嘉杰, 等. CO/N2/CO2在MOF-74(Ni)上吸附相平衡和选择性[J]. 化工学报, 2015, 66(11):4469-4475. LIU Y Y, HUANG Y, HE J J, et al. Adsorption isotherms and selectivity of CO/N2/CO2 on MOF-74(Ni)[J]. CIESC Journal, 2015, 66(11):4469-4475.
|
[39] |
黄艳, 岳盈溢, 何靓, 等. 一种具有高CO吸附容量和高CO/N2及CO/CO2分离选择性的CuCl@β吸附剂[J]. 化工学报, 2015, 66(9):3556-3562. HUANG Y, YUE Y Y, HE L, et al. An efficient CuCl@β adsorbent with high CO adsorption uptake and CO/N2 and CO/CO2 selectivities[J]. CIESC Journal, 2015, 66(9):3556-3562.
|
[40] |
夏启斌, 苗晋朋, 孙雪娇, 等. CH4/CO2在MIL-101上的吸附相平衡及选择性[J]. 华南理工大学学报(自然科学版), 2013, 41(12):24-28. XIA Q B, MIAO J P, SUN X J, et al. Phase balance and selectivity of CH4/CO2 adsorption on MIL-101[J]. Journal of South China University of Technology(Natural Science Edition), 2013, 41(12):24-28.
|
[41] |
KRISHNA R, CALERO S, SMITH B. Investigation of entropy effects during sorption of mixtures of alkanes in MFI zeolite[J]. Chemical Engineering Journal, 2002, 88(1/2/3):81-94.
|
[42] |
YAN J, YU Y, MA C, et al. Adsorption isotherms and kinetics of water vapor on novel adsorbents MIL-101(Cr)@GO with super-high capacity[J]. Applied Thermal Engineering, 2015, 84(5):118-125.
|
[43] |
余颖, 孙雪娇, 颜健, 等. 乙醇在MIL-101上的吸附相平衡及其吸附机理[J]. 化工学报, 2016, 67(1):300-308. YU Y, SUN X J, YAN J, et al. Adsorption equilibrium and mechanism of ethanol on MIL-101(Cr)[J]. CIESC Journal, 2016, 67(1):300-308.
|