化工学报 ›› 2019, Vol. 70 ›› Issue (1): 251-260.DOI: 10.11949/j.issn.0438-1157.20180716
王财林1,2(),顾帅威1,2,李玉星1,2(),胡其会1,2,滕霖1,2,王婧涵1,2,马宏涛1,2,张大同1,2
收稿日期:
2018-07-02
修回日期:
2018-11-06
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
李玉星
作者简介:
王财林(1995—),男,博士研究生,<email>842691167@qq.com</email>|李玉星(1970—),男,博士,教授,<email>liyx@upc.edu.cn</email>
基金资助:
Cailin WANG1,2(),Shuaiwei GU1,2,Yuxing LI1,2(),Qihui HU1,2,Lin TENG1,2,Jinghan WANG1,2,Hongtao MA1,2,Datong ZHANG1,2
Received:
2018-07-02
Revised:
2018-11-06
Online:
2019-01-05
Published:
2019-01-05
Contact:
Yuxing LI
摘要:
为研究CO2驱油田分离器内泡沫层产生及消除机理,设计了一套高压溶气原油泡沫测试系统,采用降压法研究了CO2-原油体系的发泡特性。利用高速摄像机对泡沫产生至衰变的演变过程进行了记录,总结分析了不同降压阶段的气泡行为,研究了降压速率和搅拌速率对原油发泡特性的影响规律。研究发现,随压力降低,稳定存在气泡的直径增大,气泡位置上移,发泡行为更加剧烈;降压速率增加对降压阶段的发泡行为无明显影响,但会加剧稳定工作压力下的发泡行为;在转速小于等于120 r/min的条件下,搅拌速率增加会加剧降压阶段的发泡行为,但会加速稳定工作压力下的泡沫衰变。
中图分类号:
王财林, 顾帅威, 李玉星, 胡其会, 滕霖, 王婧涵, 马宏涛, 张大同. CO2-原油体系发泡特性实验研究[J]. 化工学报, 2019, 70(1): 251-260.
Cailin WANG, Shuaiwei GU, Yuxing LI, Qihui HU, Lin TENG, Jinghan WANG, Hongtao MA, Datong ZHANG. Experimental study on foaming characteristics of CO2-crude oil mixture[J]. CIESC Journal, 2019, 70(1): 251-260.
Component | Mass fraction/% |
---|---|
saturates | 69.54 |
aromatics | 22.48 |
resins | 7.40 |
asphaltenes | 0.58 |
表1 黑-46油样四组分测定结果
Table 1 SARA compositions of H-46 oil sample
Component | Mass fraction/% |
---|---|
saturates | 69.54 |
aromatics | 22.48 |
resins | 7.40 |
asphaltenes | 0.58 |
Number | Stable initial pressure/MPa | Stable working pressure/MPa | Gas and liquid temperature/℃ | Depressurization rate/(MPa/min) | Stirring rate in depressurization process/(r/min) | Stirring rate under stable working pressure/(r/min) |
---|---|---|---|---|---|---|
1 | 2 | 0.5 | 40 | 0.38 | 0 | 0 |
2 | 2 | 0.5 | 40 | 0.65 | 0 | 0 |
3 | 2 | 0.5 | 40 | 2.11 | 0 | 0 |
4 | 2 | 0.5 | 40 | 0.38 | 80 | 0 |
5 | 2 | 0.5 | 40 | 0.38 | 120 | 0 |
6 | 2 | 0.5 | 40 | 0.38 | 0 | 80 |
7 | 2 | 0.5 | 40 | 0.38 | 0 | 120 |
表2 实验工况参数
Table 2 Experimental conditions
Number | Stable initial pressure/MPa | Stable working pressure/MPa | Gas and liquid temperature/℃ | Depressurization rate/(MPa/min) | Stirring rate in depressurization process/(r/min) | Stirring rate under stable working pressure/(r/min) |
---|---|---|---|---|---|---|
1 | 2 | 0.5 | 40 | 0.38 | 0 | 0 |
2 | 2 | 0.5 | 40 | 0.65 | 0 | 0 |
3 | 2 | 0.5 | 40 | 2.11 | 0 | 0 |
4 | 2 | 0.5 | 40 | 0.38 | 80 | 0 |
5 | 2 | 0.5 | 40 | 0.38 | 120 | 0 |
6 | 2 | 0.5 | 40 | 0.38 | 0 | 80 |
7 | 2 | 0.5 | 40 | 0.38 | 0 | 120 |
1 | HaszeldineR S. Carbon capture and storage: how green can black be?[J]. Science, 2009, 325(5948): 1647-1652. |
2 | MeztB. Climate change 2007: mitigation of climate change: contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change[J]. Computational Geometry, 2007, 18(2): 95-123. |
3 | 喻健良, 郭晓璐, 闫兴清, 等. 工业规模CO2管道泄放过程中的压力响应及相态变化[J]. 化工学报, 2015, 66(11): 4327-4334. |
YuJ L, GuoX L, YanX Q, et al. Pressure response and phase transition in process of CO2 pipeline release in industrial scale[J]. CIESC Journal, 2015, 66(11): 4327-4334. | |
4 | TengL, LiY X, ZhaoQ, et al. Decompression characteristics of CO2 pipelines following rupture[J]. Journal of Natural Gas Science & Engineering, 2016, 36: 213-223. |
5 | GuS W, GaoB B, TengL, et al. Monte carlo simulation of supercritical carbon dioxide adsorption in carbon slit pores[J]. Energy & Fuels, 2017, 31(9): 9717-9724. |
6 | AgarwaliA, ParsonsJ. Commercial structures for integrated CCS-EOR projects[J]. Energy Procedia, 2011, 4(22): 5786-5793. |
7 | TengL, ZhangD T, LiY X, et al. Multiphase mixture model to predict temperature drop in highly choked conditions in CO2 enhanced oil recovery[J]. Applied Thermal Engineering, 2016, 108: 670-679. |
8 | GodecM, KuuskraaV, LeeuwenT V, et al. CO2 storage in depleted oil fields: the worldwide potential for carbon dioxide enhanced oil recovery[J]. Energy Procedia, 2011, 4(22): 2162-2169. |
9 | GozalpourF, RenS R, TohidiB. CO2 EOR and storage in oil reservoir[J]. Oil & Gas Science & Technology, 2006, 60(3): 537-546. |
10 | KovscekA R, CakiciM D. Geologic storage of carbon dioxide and enhanced oil recovery. II. Cooptimization of storage and recovery[J]. Energy Conversion & Management, 2005, 46(11): 1941-1956. |
11 | QinJ, HanH, LiuX. Application and enlightenment of carbon dioxide flooding in the United States of America[J]. Petroleum Exploration & Development, 2015, 42(2): 232-240. |
12 | JohnssonF, ReinerD, ItaokaK, et al. Stakeholder attitudes on carbon capture and storage — an international comparison[J]. International Journal of Greenhouse Gas Control, 2010, 4(2): 410-418. |
13 | 张德平. CO2驱采油技术研究与应用现状[J]. 科技导报, 2011, 29(13): 75-79. |
ZhangD P. CO2 flooding enhanced oil recovery technique and its application status[J]. Science & Technology Review, 2011, 29(13): 75-79. | |
14 | RenB, RenS, ZhangL, et al. Monitoring on CO2 migration in a tight oil reservoir during CCS-EOR in Jilin Oilfield China[J]. Energy, 2016, 98: 108-121. |
15 | SongZ, LiZ, WeiM, et al. Sensitivity analysis of water-alternating-CO2 flooding for enhanced oil recovery in high water cut oil reservoirs[J]. Computers & Fluids, 2014, 99: 93-103. |
16 | MaJ, WangX, GaoR, et al. Jingbian CCS project, China: second year of injection, measurement, monitoring and verification[J]. Energy Procedia, 2014, 63: 2921-2938. |
17 | ZhaoD F, LiaoX W, YinD D. Evaluation of CO2 enhanced oil recovery and sequestration potential in low permeability reservoirs, Yanchang Oilfield, China[J]. Journal of the Energy Institute, 2014, 87(4): 306-313. |
18 | HuangF, HuangH, WangY, et al. Assessment of miscibility effect for CO2 flooding EOR in a low permeability reservoir[J]. Journal of Petroleum Science & Engineering, 2016, 145: 328-335. |
19 | 周恒, 邢晓凯, 国旭慧, 等. 原油发泡问题研究进展[J]. 石油化工高等学校学报, 2018, 31(1): 8-12. |
ZhouH, XingX K, GuoX H, et al. Research progress in foaming of crude oil[J]. Journal of Petrochemical Universities, 2018, 31(1): 8-12. | |
20 | 曲正新. 原油泡沫的危害和消除方法[J]. 当代化工, 2015, 44(5): 1132-1134. |
QuZ X. Harm and elimination methods of crude oil foam[J]. Contemporary Chemical Industry, 2015, 44(5): 1132-1134. | |
21 | 程文学, 邢晓凯, 左丽丽, 等. 液体泡沫性能测试方法综述[J]. 油田化学, 2014, 31(1): 152-158. |
ChengW X, XingX K, ZuoL L, et al. Reviews on testing methods of liquid foam performance[J]. Oilfield Chemistry, 2014, 31(1): 152-158. | |
22 | PoindexterM K, ZakiN N, KilpatrickP K, et al. Factors contributing to petroleum foaming. 1. Crude oil systems[J]. Energy & Fuels, 2002, 16(3): 700-710. |
23 | ZakiN N, PoindexterM K, KilpatrickP K. Factors contributing to petroleum foaming. 2. Synthetic crude oil systems[J]. Energy & Fuels, 2002, 16(3): 711-717. |
24 | CallaghanI C. Non-aqueous foams: a study of crude oil foam stability[M]//Foams: Physics, Chemistry and Structure. London: Springer, 1989: 89-104. |
25 | 刘德生, 陈小榆, 周承富. 温度对泡沫稳定性的影响[J]. 钻井液与完井液, 2006, 23(4):10-12. |
LiuD S, ChenX Y, ZhouC F. Effects of temperature on the stability of foam[J]. Drilling Fluid & Completion Fluid, 2006, 23(4):10-12. | |
26 | 李东东, 侯吉瑞, 赵凤兰, 等. 二氧化碳在原油中的分子扩散系数和溶解度研究[J]. 油田化学, 2009, 26(4): 405-408. |
LiD D, HouJ R, ZhaoF L, et al. Study of molecular diffusion coefficients and solubility of carbon dioxide in a Jinlin crude oil[J]. Oilfield Chemistry, 2009, 26(4): 405-408. | |
27 | 吕明明, 王树众. 二氧化碳泡沫稳定性及聚合物对其泡沫性能的影响[J]. 化工学报, 2014, 65(6): 2219-2224. |
LyuM M, WangS Z. Stability of carbon dioxide foam and effect of polymer on its foam properties[J]. CIESC Journal, 2014, 65(6): 2219-2224. | |
28 | 李曼曼. 超临界CO2用于稠油长距离输送的探索性研究[D]. 青岛: 中国石油大学(华东), 2011. |
LiM M. Exploratory research on techniques of using supercritical CO2 to deliver heavy oil[D]. Qingdao: China University of Petroleum, 2011. | |
29 | PengD Y, RobinsonD B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. |
30 | 唐金库. 泡沫稳定性影响因素及性能评价技术综述[J].舰船防化, 2008, 4: 1-8. |
TangJ K. Review on influence factors and measurement techniques of foam stability[J]. Chemical Defence on Ships, 2008, 4: 1-8. | |
31 | 燕永利. 非水相体系泡沫的形成及其稳定性机理研究进展[J]. 应用化工, 2016, 45(11): 2135-2138. |
YanY L. Advances in the foaming and stabilization mechanisms of non-aqueous systems[J]. Applied Chemical Industry, 2016, 45(11): 2135-2138. | |
32 | 赵国庆. 泡沫表观性能研究及在稠油开采中的应用[D]. 济南: 山东大学, 2007. |
ZhaoG Q. Foam apparent properties study and its application in heavy oil recovery[D]. Jinan: Shandong University, 2007. | |
33 | PrincenH M, MasonS G. The permeability of soap films to gases[J]. Journal of Colloid Science, 1965, 20(4): 353-375. |
34 | 熊钰, 王冲, 王玲, 等. 泡沫油形成过程及其影响因素研究进展[J]. 世界科技研究与发展, 2016, 38(3): 471-480. |
XiongY, WangC, WangL, et al. Research development of foamy oil formation and its affecting factors[J]. World Sci-Tech R&D., 2016, 38(3): 471-480. | |
35 | 赵仁保, 敖文君, 肖爱国, 等. CO2在原油中的扩散规律及变扩散系数计算方法[J]. 中国石油大学学报(自然科学版), 2016, 40(3): 136-142. |
ZhaoR B, AoW J, XiaoA G, et al. Diffusion law and measurement of variable diffusion coefficient of CO2 in oil[J]. Journal of China University of Petroleum, 2016, 40(3): 136-142. |
[1] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[2] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[3] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[4] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[5] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[6] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[7] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[8] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[9] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[10] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[11] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[12] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[13] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[14] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[15] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||