化工学报 ›› 2019, Vol. 70 ›› Issue (11): 4346-4355.DOI: 10.11949/0438-1157.20190405
收稿日期:
2019-04-17
修回日期:
2019-06-03
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
凌忠钱
作者简介:
凌忠钱(1977—),男,博士,副教授,Zhongqian LING(),Chao ZHOU,Xianyang ZENG,Bo LING,Jiongjie QIAN
Received:
2019-04-17
Revised:
2019-06-03
Online:
2019-11-05
Published:
2019-11-05
Contact:
Zhongqian LING
摘要:
近年来低热值气体的利用慢慢进入大众视野。为了加大对低热值气体的利用,实现低热值气体的清洁排放,自行搭建了多孔介质实验台,探究乙烯在自由堆积氧化铝小球中的预混燃烧的污染物排放规律。在改变当量比、流速以及空隙率等工况下进行乙烯的燃烧并对出口烟气进行数据采集,分析在不同工况时的污染物排放情况以及乙烯转换率。实验结果表明多孔介质燃烧技术是一种可以高效清洁处理热值气体的燃烧方式,在较好的实验工况下CO的排放可以降低至125~187 mg/m3,NO的排放与当量比有关,和流速以及空隙率关系不大,整个实验过程中的NO出口浓度低于16 mg/m3。稳定燃烧情况下乙烯的转化率在80%~90%之间。实验结果对于高效清洁地处理低热值气体具有一定指导意义。
中图分类号:
凌忠钱, 周超, 曾宪阳, 凌波, 钱炯杰. 多孔介质内低热值乙烯燃烧的污染物排放特性试验研究[J]. 化工学报, 2019, 70(11): 4346-4355.
Zhongqian LING, Chao ZHOU, Xianyang ZENG, Bo LING, Jiongjie QIAN. Experimental study on pollutant emission characteristics of lower-heat-value ethylene combustion in porous media[J]. CIESC Journal, 2019, 70(11): 4346-4355.
测量参数 | 分辨率 | 精度 |
---|---|---|
温度 | 0.0001 K | ±1 K |
O2 | 0.01%(体积) | ±0.2%(体积) |
CO2 | 0.01%(体积) | ±读数的1% |
NO x | 1 mg/m3 | ±5 mg/m3 |
CO | 1 mg/m3 | ±读数的5% |
表1 关键测量参数指标
Table 1 Indicator of key measurement parameters
测量参数 | 分辨率 | 精度 |
---|---|---|
温度 | 0.0001 K | ±1 K |
O2 | 0.01%(体积) | ±0.2%(体积) |
CO2 | 0.01%(体积) | ±读数的1% |
NO x | 1 mg/m3 | ±5 mg/m3 |
CO | 1 mg/m3 | ±读数的5% |
当量比φ | 流速V/(cm/s) | 空隙率/% |
---|---|---|
0.45 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
0.5 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
0.55 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
0.6 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
0.65 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
0.7 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
表2 实验工况
Table 2 Test conditions
当量比φ | 流速V/(cm/s) | 空隙率/% |
---|---|---|
0.45 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
0.5 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
0.55 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
0.6 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
0.65 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
0.7 | 25,30,35,40,45,50,55,60 | 43.7,47.5 |
1 | Minde G P , Magdum S S , Kalyanraman V . Biogas as a sustainable alternative for current energy need of India[J]. Sustainable Energy & Environment, 2013, 4: 121-132 |
2 | 陈福龙 . 低热值煤气燃烧实验研究[D]. 武汉: 华中科技大学, 2009. |
Chen F L . Experimental study on low calorific value gas combustion[D]. Wuhan: Huazhong University of Science and Technology, 2009. | |
3 | Sobiesiak A , Wenzell J C . Characteristics and structure of inverse flames of natural gas[J]. Proceedings of the Combustion Institute, 2005, 30(1): 743-749. |
4 | Wood S , Harris A T . Porous burners for lean-burn applications[J]. Progress in Energy and Combustion Science, 2008, 34(5): 667-684. |
5 | Gao H , Qu Z , Tao W , et al . Experimental study of biogas combustion in a two-layer packed bed burner[J]. Energy & Fuels, 2011, 25(7): 2887-2895. |
6 | Weinberg F J . Combustion temperatures: the future?[J]. Nature, 1971, 233(5317): 239-241. |
7 | Janvekar A A , Abdullah M Z , Ahmad Z A , et al . Assessment of porous media burner for surface/submerged flame during porous media combustion[C]//International Conference on Education. 2017. |
8 | Babkin V S , Korzhavin A A , Bunev V A . Propagation of premixed gaseous explosion flames in porous media[J]. Combustion & Flame, 1991, 87(2): 182-190. |
9 | Minaev S S , Potytnyakov S I , Babkin V S . Combustion wave instability in the filtration combustion of gases[J]. Combustion Explosion & Shock Waves, 1994, 30(3): 306-310. |
10 | Laevskii Y M , Babkin V S . Stabilized gas combustion wave in an inert porous medium[J]. Combustion Explosion & Shock Waves, 2008, 44(5): 502-508. |
11 | Mital R , Gore J P , Viskanta R . A study of the structure of submerged reaction zone in porous ceramic radiant burners[J]. Combustion & Flame, 1997, 111(3): 175-184. |
12 | Borra A J , Ellzey J L . Heat recirculation and heat transfer in porous burners[J]. Combustion & Flame, 2004, 137(1): 230-241. |
13 | Gonzalez H , Caro S , Toledo M , et al . Syngas production from polyethylene and biogas in porous media combustion[J]. International Journal of Hydrogen Energy, 2018, 43(9): 4294-4304. |
14 | Toledo M , Gracia F , Caro S , et al . Hydrocarbons conversion to syngas in inert porous media combustion[J]. International Journal of Hydrogen Energy, 2016, 41(14): 5857-5864. |
15 | Mohamad A A . Combustion in porous media: fundamentals and applications[M]//Ingham D. Transport Phenomena in Porous Media III. Langford Kidlington: Elsevier Ltd, 2005: 287-304. |
16 | Mathis W M , Ellzey J L . Flame stabilization, operating range, and emissions for a methane/air porous burner[J]. Combustion Science and Technology, 2003, 175(5): 825-839. |
17 | Rumminger M D , Hamlin R D , Dibble R W . Numerical analysis of a catalytic radiant burner: effect of catalyst on radiant efficiency and operability[J]. Catalysis Today, 1999, 47(1/2/3/4): 253-262. |
18 | Keramiotis C , Stelzner B , Trimis D , et al . Porous burners for low emission combustion: an experimental investigation[J]. Energy, 2012, 45(1): 213-219. |
19 | Trimis D , Durst F . Combustion in a porous medium-advances and applications[J]. Combustion Science and Technology, 1996, 121(1/2/3/4/5/6): 153-168. |
20 | Gao H , Qu Z , Feng X , et al . Combustion of methane/air mixtures in a two-layer porous burner: a comparison of alumina foams, beads, and honeycombs[J]. Experimental Thermal and Fluid Science, 2014, 52: 215-220. |
21 | Gao H B , Qu Z G , Feng X B , et al . Methane/air premixed combustion in a two-layer porous burner with different foam materials[J]. Fuel, 2014, 115: 154-161. |
22 | Liu J F , Hsieh W H . Experimental investigation of combustion in porous heating burners[J]. Combustion & Flame, 2004, 138(3): 295-303. |
23 | Keramiotis C , Founti M A . An experimental investigation of stability and operation of a biogas fueled porous burner[J]. Fuel, 2013, 103(1): 278-284. |
24 | Abdelaal M M , El-Riedy M K , El-Nahas A M . Effect of oxygen enriched air on porous radiant burner performance and NO emissions[J]. Experimental Thermal and Fluid Science, 2013, 45(Complete): 163-168. |
25 | Tseng C J . Effects of hydrogen addition on methane combustion in a porous medium burner[J]. International Journal of Hydrogen Energy, 2002, 27(6): 699-707. |
26 | Alavandi S K , Agrawal A K . Lean premixed combustion of carbon-monoxide-hydrogen-methane fuel mixtures using porous inert media[C]// ASME Turbo Expo: Power for Land, Sea, & Air. 2005. |
27 | 代华明, 林柏泉, 李庆钊, 等 . 水汽对多孔介质中低浓度瓦斯燃烧特性的影响[J]. 北京科技大学学报, 2013, 35(10): 1375-1381. |
Dai H M , Lin B Q , Li Q Z , et al . Effect of water vapor on low-concentration gas combustion characteristics in porous media[J]. Journal of University of Science and Technology Beijing, 2013, 35(10): 1375-1381. | |
28 | Gao H B , Qu Z G , Tao W Q , et al . Experimental investigation of methane/(Ar, N2, CO2)–air mixture combustion in a two-layer packed bed burner[J]. Experimental Thermal and Fluid Science, 2013, 44: 599-606. |
29 | 娄马宝 . 低热值气体燃料(包括高炉煤气)的利用[J]. 燃气轮机技术, 2000, 13(3): 16-18. |
Lou B M . Utilization of low calorific value gas fuel (including blast furnace gas)[J]. Gas Turbine Technology, 2000, 13(3): 16-18. | |
30 | 王恩宇, 程乐鸣, 吴晋湘, 等 . 多孔陶瓷在燃烧领域的应用及存在问题[J]. 佛山陶瓷, 2005, (4): 35-39. |
Wang E Y , Cheng L M , Wu J X , et al . Application and problems of porous ceramics in the field of combustion[J]. Foshan Ceramics, 2005, (4): 35-39. | |
31 | 吴雪松, 程乐鸣, 闫珂, 等 . 工业级多孔介质低氮燃烧器试验研究[J]. 浙江大学学报(工学版), 2018, 52(11): 2136-2141. |
Wu X S , Cheng L M , Yan K , et al . Experimental study on industrial grade porous medium low nitrogen burner[J]. Journal of Zhejiang University(Engineering Edition), 2018, 52(11): 2136-2141. | |
32 | Rørtveit G J , Zepter K , Ø Skreiberg , et al . A comparison of low-NO x burners for combustion of methane and hydrogen mixtures[J]. Proceedings of the Combustion Institute, 2002, 29(1): 1123-1129. |
33 | Liu J F , Hsieh W H . Experimental investigation of combustion in porous heating burners[J]. Combustion & Flame, 2004, 138(3): 295-303. |
34 | 贾海龙 .有机废气流化床焚烧处理试验研究[D]. 杭州: 浙江大学, 2006. |
Jia H L . Experimental study on fluidized bed incineration treatment of organic waste gas[D]. Hangzhou: Zhejiang University, 2006. |
[1] | 吴曦, 区祖迪, 张鑫杰, 徐士鸣, 朱晓静. HFO-1243zf爆燃特性实验研究[J]. 化工学报, 2023, 74(S1): 346-352. |
[2] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[3] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[4] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[5] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[6] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[7] | 贾晓宇, 杨剑, 王博, 林梅, 王秋旺. 金属丝网毛细特性的孔隙尺度数值分析[J]. 化工学报, 2023, 74(5): 1928-1938. |
[8] | 王晓萱, 胡晓红, 陆雨楠, 王士勇, 凡凤仙. 旋转膜过滤器内部流动特性数值模拟[J]. 化工学报, 2023, 74(4): 1489-1498. |
[9] | 张银宁, 王进卿, 冯致, 詹明秀, 徐旭, 张光学, 池作和. 升温条件下多孔介质内气泡的生长和聚并行为[J]. 化工学报, 2023, 74(4): 1509-1518. |
[10] | 杨辉著, 兰精灵, 杨月, 梁嘉林, 吕传文, 朱永刚. 高功率平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(4): 1561-1569. |
[11] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
[12] | 胡香凝, 尹渊博, 袁辰, 是赟, 刘翠伟, 胡其会, 杨文, 李玉星. 成品油在土壤中运移可视化的实验研究[J]. 化工学报, 2023, 74(4): 1827-1835. |
[13] | 禹进, 余彬彬, 蒋新生. 一种基于虚拟组分的燃烧调控化学作用量化及分析方法研究[J]. 化工学报, 2023, 74(3): 1303-1312. |
[14] | 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186. |
[15] | 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||