化工学报 ›› 2019, Vol. 70 ›› Issue (11): 4370-4376.DOI: 10.11949/0438-1157.20190487
吕泽康1(),龙慎伟2,李冠兵2,牛胜利1(
),路春美1,韩奎华1,王永征1
收稿日期:
2019-05-08
修回日期:
2019-07-12
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
牛胜利
作者简介:
吕泽康(1997—),男,硕士研究生,基金资助:
Zekang LYU1(),Shenwei LONG2,Guanbing LI2,Shengli NIU1(
),Chunmei LU1,Kuihua HAN1,Yongzheng WANG1
Received:
2019-05-08
Revised:
2019-07-12
Online:
2019-11-05
Published:
2019-11-05
Contact:
Shengli NIU
摘要:
氯气的活化氧化腐蚀是生物质锅炉过热器腐蚀的主要原因之一。为探究活化氧化腐蚀循环中FeCl2与O2的反应机理,本文利用Material Studio中的DMOl3模块,基于密度泛函和过渡态理论,优化了各反应物、产物、中间体和过渡态的几何构型。通过频率分析证实了中间体和过渡态的真实性。结果表明,FeCl2与O2反应生成Fe3O4的过程中逐次生成3个Cl2分子,其中第三个Cl2逸出生成Fe3O4需要吸收高达300.4 kJ/mol的能量,为反应路径的速率决定步骤。
中图分类号:
吕泽康, 龙慎伟, 李冠兵, 牛胜利, 路春美, 韩奎华, 王永征. 生物质锅炉氯腐蚀的密度泛函理论研究[J]. 化工学报, 2019, 70(11): 4370-4376.
Zekang LYU, Shenwei LONG, Guanbing LI, Shengli NIU, Chunmei LU, Kuihua HAN, Yongzheng WANG. Density functional theory study on chlorine corrosion of biomass furnace[J]. CIESC Journal, 2019, 70(11): 4370-4376.
Species | E/Ha | Frequency/cm-1 | Species | E/Ha | Frequency/ cm-1 |
---|---|---|---|---|---|
O2 | -150.39 | — | IM11 | -1508.00 | — |
Cl2 | -920.42 | — | IM12 | -587.58 | — |
FeCl2 | -1063.80 | — | IM13 | -587.52 | — |
Fe3O4 | -730.92 | — | IM14 | -1651.46 | — |
IM1 | -1214.22 | — | IM15 | -1651.46 | — |
IM2 | -1214.26 | — | IM16 | -1651.34 | — |
IM3 | -2278.09 | — | TS1 | -1214.19 | -869.50 |
IM4 | -2278.16 | — | TS2 | -2278.08 | -390.80 |
IM5 | -2278.13 | — | TS3 | -2278.13 | -119.00 |
IM6 | -2278.03 | — | TS4 | -2278.03 | -86.00 |
IM7 | -1357.61 | — | TS5 | -1508.03 | -817.10 |
IM8 | -1508.06 | — | TS6 | -1508.02 | -316.66 |
IM9 | -1508.10 | — | TS7 | -1507.99 | -22.66 |
IM10 | -1508.04 | — | TS8 | -1651.43 | -85.00 |
表1 反应路径中各驻点的能量及过渡态的振动虚频
Table 1 Energies of various compounds and imaginary frequency of transition states
Species | E/Ha | Frequency/cm-1 | Species | E/Ha | Frequency/ cm-1 |
---|---|---|---|---|---|
O2 | -150.39 | — | IM11 | -1508.00 | — |
Cl2 | -920.42 | — | IM12 | -587.58 | — |
FeCl2 | -1063.80 | — | IM13 | -587.52 | — |
Fe3O4 | -730.92 | — | IM14 | -1651.46 | — |
IM1 | -1214.22 | — | IM15 | -1651.46 | — |
IM2 | -1214.26 | — | IM16 | -1651.34 | — |
IM3 | -2278.09 | — | TS1 | -1214.19 | -869.50 |
IM4 | -2278.16 | — | TS2 | -2278.08 | -390.80 |
IM5 | -2278.13 | — | TS3 | -2278.13 | -119.00 |
IM6 | -2278.03 | — | TS4 | -2278.03 | -86.00 |
IM7 | -1357.61 | — | TS5 | -1508.03 | -817.10 |
IM8 | -1508.06 | — | TS6 | -1508.02 | -316.66 |
IM9 | -1508.10 | — | TS7 | -1507.99 | -22.66 |
IM10 | -1508.04 | — | TS8 | -1651.43 | -85.00 |
Species | Bond type | Bond length/nm | |
---|---|---|---|
Calculated | Literature | ||
O2 | r(O—O) | 0.1237 | 0.1220[ |
Cl2 | r(Cl—Cl) | 0.2076 | 0.2053[ |
FeCl2 | r(Fe—Cl) | 0.2156 | 0.2200[ |
Fe3O4 | r(Fe—O) | 0.1843 | 0.1860[ |
表2 反应物、生成物平均键长的计算值和文献值对比
Table 2 Average bond length of calculated values and literature values for reactant and product
Species | Bond type | Bond length/nm | |
---|---|---|---|
Calculated | Literature | ||
O2 | r(O—O) | 0.1237 | 0.1220[ |
Cl2 | r(Cl—Cl) | 0.2076 | 0.2053[ |
FeCl2 | r(Fe—Cl) | 0.2156 | 0.2200[ |
Fe3O4 | r(Fe—O) | 0.1843 | 0.1860[ |
图1 中间体Cl2Fe2O2形成过程中各中间体和过渡态的几何构型(O:红色,Cl:绿色,Fe:蓝色;键长单位:nm)
Fig.1 Geometries of the intermediates and transition states involved in Cl2Fe2O2 formation(O: red, Cl: green, Fe: blue, bond length unit:nm)
1 | Khan A A , Jong W D , Jansens P J , et al . Biomass combustion in fluidized bed boilers: potential problems and remedies[J]. Fuel Processing Technology, 2009, 90(1): 21-50. |
2 | Tillman D A . Biomass cofiring: the technology, the experience, the combustion consequences[J]. Biomass & Bioenergy, 2000, 19(6): 365-384. |
3 | Dincer I . Renewable energy and sustainable development: a crucial review[J]. Renewable and Sustainable Energy Reviews, 2000, 4(2): 157-175. |
4 | Vassilev S V , Baxter D , Andersen L K , et al . An overview of the chemical composition of biomass[J]. Fuel, 2010, 89(5): 913-933. |
5 | Yu C , Qin J , Nie H , et al . Experimental research on agglomeration in straw-fired fluidized beds [J]. Applied Energy, 2011, 88(12): 4534-4543. |
6 | Nielsen H P , Frandsen F J , Dam-Johansen K , et al . The implications of chlorine-associated corrosion on the operation of biomass-fired boilers[J]. Progress in Energy and Combustion Science, 2000, 26(3): 283-298. |
7 | 徐婧 . 生物质燃烧过程中碱金属析出的实验研究[D]. 杭州: 浙江大学, 2006. |
Xu J . Experimental study on alkali metal precipitation during biomass combustion [D]. Hangzhou: Zhejiang University, 2006. | |
8 | Jensen P A , Frandsen F J , Dam-Johansen K , et al . Experimental investigation of the transformation and release to gas phase of potassium and chlorine during straw pyrolysis[J]. Energy&Fuel, 2000, 14(6): 1280-1285. |
9 | Nielsen H P . The implications of chlorine-associated corrosion on the operation of biomass-fired boilers[J]. Progress in Energy & Combustion Science, 2000, 26(3): 283-298. |
10 | 岳茂振 . 秸秆类生物质与煤混燃过程中氯腐蚀规律研究[D]. 济南: 山东大学, 2011. |
Yue M Z . Study on the corrosion law of chlorine in the process of straw-based biomass and coal co-firing[D]. Jinan: Shandong University, 2011. | |
11 | 李至 . 生物质与煤混燃灰熔融特性及其影响研究[D]. 武汉: 华中科技大学, 2015. |
Li Z . Study on melting characteristics and effects of biomass and coal mixed combustion ash [D]. Wuhan: Huazhong University of Science and Technology, 2015. | |
12 | Uusitalo M A , Vuoristo P M J , Mantyla T A . High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits[J]. Corrosion Science, 2004, 46(6): 1311–1331. |
13 | Grahke H J . Reese E, Spiegel M. The effect of chlorides, hydrogen chloride, and sulthr dioxide in the oxidation of steels below deposits[J]. Corrosion Science, 1995, 37(7): 1023-1043. |
14 | Berlanga C , Ruiz J A . Study of corrosion in a biomass boiler[J]. Journal of Chemistry, 2013, 2013(4): 1-8. |
15 | Zahs A , Spiegel M , Grabke H J . Chloridation and oxidation of iron, chromium, nickel and their alloys in chloridizing and oxidizing atmospheres at 400–700℃[J]. Corrosion Science, 2000, 42(6): 1093-1122. |
16 | 邹潺, 王春波, 邢佳颖 . 煤燃烧过程中砷与氮氧化物的反应机理[J].燃料化学学报, 2019, 47(2): 138-143. |
Zou C , Wang C B , Xing J Y . Reaction mechanism of arsenic and nitrogen oxides in coal combustion process[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 138-143. | |
17 | 贾建波, 曾凡桂, 李美芬, 等 . 用密度泛函理论研究煤中甲基苯生成甲烷的反应机理[J]. 化工学报, 2010, 61(12): 3235-3242. |
Jia J B , Zeng F G , Li M F , et al . Study on the reaction mechanism of methylbenzene to methane in coal by density functional theory[J]. CIESC Journal, 2010, 61(12): 3235-3242. | |
18 | 王荣杰, 沈本贤, 马健, 等 . 基于密度泛函的硫黄S8开环裂解机理[J]. 化工学报, 2015, 66(10): 3919-3924. |
Wang R J , Shen B X , Ma J , et al . Mechanism of open-loop cracking of sulfur S8 based on density functional theory[J]. CIESC Journal, 2015, 66(10): 3919-3924. | |
19 | 朱正和, 阎世英, 马美仲 . B2H6分子的几何构型[J]. 物理学报, 2005, 54(7): 3106-3110. |
Zhu Z H , Yan S Y , Ma M Z . Geometrical configuration of B2H6 molecule[J]. Acta Physica Sinica, 2005, 54(7): 3106-3110. | |
20 | 冯晓娜, 杨冬花, 武正簧, 等 . B、Al、La 同晶取代 EU-1 分子筛酸性的密度泛函理论计算[J]. 石油学报, 2013, 29(4): 647-654. |
Feng X N , Yang D H , Wu Z H , et al . Density functional theory calculation of the acidity of B, Al and La isomorphous substituted EU-1 molecular sieves[J]. Acta Petrolei Sinica, 2013, 29(4): 647-654. | |
21 | 田继权, 王伯初, 陈双扣, 等 . HClO对TYR氧化的理论研究[J]. 计算机与应用化学, 2011, 28(2): 217-221. |
Tian J Q , Wang B C , Chen S K , et al . Theoretical study on oxidation of TYR by HClO[J]. Computers and Applied Chemistry, 2011, 28(2): 217-221. | |
22 | Zhang M , Wang W , Chen Y . Theoretical investigation of selective catalytic reduction of NO on MIL-100-Fe[J]. Physical Chemistry Chemical Physics, 2018, 20(4): 2211-2219. |
23 | 黄金保, 刘朝, 魏顺安 . 纤维素热解形成左旋葡聚糖机理的理论研究[J]. 燃料化学学报, 2011, 39(8): 590-594. |
Huang J B , Liu C , Wei S A . Theoretical study on the mechanism of cellulose pyrolysis to form L-glucan[J]. Journal of Fuel Chemistry and Technology, 2011, 39(8): 590-594. | |
24 | 王小曼, 苏亚欣, 周皞, 等 . Fe2与SO2反应的密度泛函理论研究[J]. 原子与分子物理学报, 2017, 34(4): 625-629. |
Wang X M , Su Y X , Zhou H , et al . Density functional theory study on the reaction of Fe2 with SO2 [J]. Journal of Atomic and Molecular Physics, 2017, 34(4): 625-629. | |
25 | 侯封, 金晶, 王永贞, 等 . 污泥热解中 HCN 与 CaO 的反应机理: 密度泛函理论研究[J]. 燃料化学学报, 2017, 45(1): 123-128. |
Hou F , Jin J , Wang Y Z , et al . Reaction mechanism of HCN and CaO in sludge pyrolysis: density functional theory study[J]. Journal of Fuel Chemistry and Technology, 2017, 45(1): 123-128. | |
26 | Reddy B V , Rasouli F , Hajaligol M R , et al . Novel pathway for CO oxidation on a Fe2O3 cluster[J]. Chemical Physics Letters, 2004, 384(4/5/6): 242-245. |
27 | 迟绍明, 王宁, 马丽英, 等 . NO3 -+Cl2→ClONO2+Cl-反应势能面和势能阱[J]. 高等学校化学学报, 2008, 29(6): 1228-1233. |
Chi S M , Wang N , Ma L Y , et al . Potential energy surface and potential energy well of NO3 -+Cl2→ClONO2+Cl- [J]. Chemical Journal of Chinese Universities, 2008, 29(6): 1228-1233. | |
28 | Bojana G P , Camaioni D M , Michel D . About the barriers to reaction of CCl4 with HFeOH and FeCl2 [J]. Journal of Physical Chemistry A, 2011, 115(31): 8713-8720. |
29 | Mejia-Olvera R , Reveles J U , Pacheco-Ortín S M , et al . Molecular dynamics and electronic structure study of neutral, cationic and anionic (Fe3O4) 1–5, clusters[J]. Chemical Physics Letters, 2018, 706(3): 494-500. |
30 | 凌丽霞, 赵俐娟, 章日光, 等 . 苯甲酸和苯甲醛热解机理的量子化学研究[J]. 化工学报, 2009, 60(5): 1224-1230. |
Ling L X , Zhao L J , Zhang R G , et al . Quantum chemistry study on the pyrolysis mechanism of benzoic acid and benzaldehyde[J]. CIESC Journal, 2009, 60(5): 1224-1230. | |
31 | 徐建华, 胡常伟 . FeCH2+H2→Fe+CH4反应机理的密度泛函理论研究[J]. 原子与分子物理学报, 2008, 25(2): 274-280. |
Xu J H , Hu C W . Density functional theory study on the reaction mechanism of FeCH2+H2→Fe+CH4 [J]. Journal of Atomic and Molecular Physics, 2008, 25(2): 274-280. | |
32 | Qin W , Chen Q L , Wang Y , et al . Theoretical study of oxidation-reduction reaction of Fe2O3 supported on MgO during chemical looping combustion[J]. Applied Surface Science, 2013, 266(2): 350-354. |
[1] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[2] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[3] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[4] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[5] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[6] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[7] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[8] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[9] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[10] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[11] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[12] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[13] | 杜峰, 尹思琦, 罗辉, 邓文安, 李传, 黄振薇, 王文静. H2在Mo x S y 团簇上吸附解离的尺寸效应研究[J]. 化工学报, 2022, 73(9): 3895-3903. |
[14] | 杨松涛, 李东洋, 牛玉清, 李鑫钢, 康绍辉, 李洪, 叶开凯, 周志全, 高鑫. 氟化物势能函数和热力学性质的分子模拟研究进展[J]. 化工学报, 2022, 73(9): 3828-3840. |
[15] | 廖艺, 牛亚宾, 潘艳秋, 俞路. 复配表面活性剂对油水界面行为和性质影响的模拟研究[J]. 化工学报, 2022, 73(9): 4003-4014. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 192
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 457
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||