1 |
纪献兵, 徐进良. 流体在超轻多孔金属泡沫中的流动和换热特性[J]. 化工学报, 2009, 60(1): 21-27.
|
|
JiX B, XuJ L. Fluid flow and heat transfer characteristics in ultra light porous metal foam[J]. CIESC Journal, 2009, 60(1): 21-27.
|
2 |
朱禹, 胡海涛, 丁国良, 等. 制冷剂/油在泡沫金属加热表面池沸腾换热特性[J]. 化工学报, 2011, 62(2): 329-335.
|
|
ZhuY, HuH T, DingG L, et al. Nucleate pool boiling heat transfer characteristics of regrigerant/oil mixture on metal foam covers[J]. CIESC Journal, 2011, 62(2): 329-335.
|
3 |
逯国强, 韩吉田, 孔令健, 等. 卧式螺旋管内流动换热壁温分布特性[J]. 化工学报, 2014, 65(S1): 152-156.
|
|
LuG Q, HanJ T, KongL J, et al. Wall temperature distribution characteristics of flow and heat transfer inside horizontal helically-coiled tube[J]. CIESC Journal, 2014, 65(S1): 152-156.
|
4 |
XuJ, JiX, YangW, et al. Modulated porous wick evaporator for loop heat pipes: experiment[J]. International Journal of Heat and Mass Transfer, 2014, 72: 163-176.
|
5 |
DasS, SahaB, BhaumikS. Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with SiO2 nanostructure[J]. Experimental Thermal and Fluid Science, 2017, 81: 454-465.
|
6 |
GheitaghyA M, SaffariH, GhasimiD, et al. Effect of electrolyte temperature on porous electrodeposited copper for pool boiling enhancement[J]. Applied Thermal Engineering, 2017, 113: 1097-1106.
|
7 |
WangY Q, MoD C, LyuS S. Enhanced pool boiling heat transfer on mono and multi-layer micro-nano bi-porous copper surfaces[C]//ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. Biopolis, Singapore, 2016: V001T04A005.
|
8 |
ByonC, ChoiS, KimS J. Critical heat flux of bi-porous sintered copper coatings in FC-72[J]. International Journal of Heat and Mass Transfer, 2013, 65: 655-661.
|
9 |
郭兆阳, 徐鹏, 王元华, 等. 烧结型多孔表面管外池沸腾传热特性[J]. 化工学报, 2012, 63(12) : 3798-3804.
|
|
GuoZ Y, XuP, WangY H, et al. Pool boiling heat transfer on sintered porous coating tubes[J]. CIESC Journal, 2012, 63(12): 3798-3804.
|
10 |
ZupančičM, SteinbücherM, GregorčičP, et al. Enhanced pool-boiling heat transfer on laser-made hydrophobic/superhydrophilic polydimethylsiloxane-silica patterned surfaces[J]. Applied Thermal Engineering, 2015, 91: 288-297.
|
11 |
LuM C, HuangC H, HuangC T, et al. A modified hydrodynamic model for pool boiling CHF considering the effects of heater size and nucleation site density[J]. International Journal of Thermal Sciences, 2015, 91: 133-41.
|
12 |
RaineyK N, YouS M. Pool boiling heat transfer from plain and microporous, square pin-finned surfaces in saturated FC-72[J]. Journal of Heat Transfer, 2000, 122(3): 509-516.
|
13 |
ClarkH B, StrengeP S, WestwaterJ W. Active sites for nucleate boiling[J]. Chemical Engineering Progress Symposium, 1959, 56(29): 103-110.
|
14 |
ShojiM, TakagiY. Bubbling features from a single artificial cavity[J]. International Journal of Heat and Mass Transfer, 2001, 44(14): 2763-2776.
|
15 |
HsuY Y. On the size range of active nucleation cavities on a heating surface[J]. Journal of Heat Transfer, 1962, 84(3): 207-213.
|
16 |
KimS H, LeeG C, KangJ Y, et al. Boiling heat transfer and critical heat flux evaluation of the pool boiling on micro structured surface[J]. International Journal of Heat and Mass Transfer, 2015, 91: 1140-1147.
|
17 |
DongL, QuanX, ChengP. An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures[J]. International Journal of Heat and Mass Transfer, 2014, 71: 189-196.
|
18 |
HondaH, TakamastuH, WeiJ J. Enhanced boiling of FC-72 on silicon chips with micro-pin-fins and submicron-scale roughness[J]. Journal of Heat Transfer, 2002, 124(2): 383.
|
19 |
HutterC, KenningD B R, SefianeK, et al. Experimental pool boiling investigations of FC-72 on silicon with artificial cavities and integrated temperature microsensors[J]. Experimental Thermal and Fluid Science, 2010, 34(4): 422-433.
|
20 |
LieY M, KeJ H, ChangW R, et al. Saturated flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-finned silicon chip[J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20): 3862-3876.
|
21 |
YuC K, LuD C, ChengT C. Pool boiling heat transfer on artificial micro-cavity surfaces in dielectric fluid FC-72[J]. Journal of Micromechanics and Microengineering, 2006, 16(10): 2092-2099.
|
22 |
ZhaoY H, MasuokaT, TsurutaT. Unified theoretical prediction of fully developed nucleate boiling and critical heat flux based on a dynamic microlayer model[J]. International Journal of Heat and Mass Transfer, 2002, 45(15): 3189-3197.
|
23 |
刁彦华, 赵耀华. R-141b池沸腾气泡行为的可视化及传热研究[C]// 2004年传热传质学学术会议. 吉林, 2004: 043288.
|
|
DiaoY H, ZhaoY H. Visual study on bubble dynamics and heat transfer mechanism of pool boiling of R-141b[C]//Heat Mass Transfer Conference of China. Jilin, 2004: 043288.
|
24 |
刁彦华, 赵耀华, 王秋良. R-113池沸腾气泡行为的可视化及传热机理[J]. 化工学报, 2005, 56(2): 227-234.
|
|
DiaoY H, ZhaoY H, WangQ L. Bubble dynamics and heat transfer mechanism of pool boiling of R-113[J]. Journal of Chemical Industry and Engineering(China), 2005, 56(2): 227-234.
|
25 |
GerardiC, BuongiornoJ, HuL W, et al. Study of bubble growth in water pool boiling through synchronized, infrared thermometry and high-speed video[J]. International Journal of Heat and Mass Transfer, 2010, 53(19/20): 4185-4192.
|
26 |
GerardiC B J, HuL W, MckrellT. Infrared thermometry study of nanofluid pool boiling phenomena[J]. Nano Scale Research Letters, 2011, 6(1): 232.
|
27 |
JungJ, KimS J, KimJ. Observations of the critical heat flux process during pool boiling of FC-72[J]. Journal of Heat Transfer, 2014, 136(4): 041501.
|
28 |
DhillonN S, BuongiornoJ, VaranasiK K. Critical heat flux maxima during boiling crisis on textured surfaces[J]. Nature Communications, 2015, 6: 8247.
|
29 |
GolobicI, ZupancicM. Wall-temperature distributions of nucleate pool boiling surfaces vs. boiling curves: a new approach[J]. International Journal of Heat and Mass Transfer, 2016, 99: 541-547.
|
30 |
ChenH X, SunY, HuangL B, et al. Nucleation and sliding growth of boiling bubbles on locally heated silicon surfaces[J]. Applied Thermal Engineering, 2018, 143: 1068-1078.
|
31 |
ZuberN. Hydrodynamic Aspects of Boiling Heat Transfer[M].United States: AEC Report, 1959.
|