化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4111-4120.DOI: 10.11949/0438-1157.20201677
收稿日期:
2020-11-23
修回日期:
2021-02-09
出版日期:
2021-08-05
发布日期:
2021-08-05
通讯作者:
曹海亮
作者简介:
曹海亮(1976—),男,博士,副教授,基金资助:
Hailiang CAO(),Hongfei ZHANG,Qianlong ZUO,Qi AN,Ziyang ZHANG,Hongbei LIU
Received:
2020-11-23
Revised:
2021-02-09
Online:
2021-08-05
Published:
2021-08-05
Contact:
Hailiang CAO
摘要:
池沸腾换热表面的结构对其沸腾换热性能具有重要影响。为了进一步强化在较低表面过热度时池沸腾换热的性能,提出了新型梯形微槽道池沸腾换热表面,采用可视化实验方法研究了饱和温度下去离子水在该表面的池沸腾换热性能。结果表明:与光滑平面相比,梯形微槽道表面可以降低起始沸腾表面过热度;在相同表面过热度时,随着下底长度的增大、下底角角度的减小,梯形微槽道表面的热通量增加,换热能力增强。下底长度为1.2 mm、下底角度为45°的梯形微槽道表面具有最低的起始沸腾表面过热度(1.4 K);在表面过热度为8.3 K时,其热通量能达到1.2×106 W·m-2,为相同表面过热度时光滑表面的24.0倍。较大的下底长度和较小的下底角角度有利于增强梯形微槽道表面的池沸腾换热性能。
中图分类号:
曹海亮, 张红飞, 左潜龙, 安琪, 张子阳, 刘红贝. 梯形微槽道表面池沸腾换热性能研究[J]. 化工学报, 2021, 72(8): 4111-4120.
Hailiang CAO, Hongfei ZHANG, Qianlong ZUO, Qi AN, Ziyang ZHANG, Hongbei LIU. Study on pool boiling heat transfer performance of trapezoidal microchannel surface[J]. CIESC Journal, 2021, 72(8): 4111-4120.
序号 | 开口宽度W/mm | 槽道深度H/mm | 肋底宽度E/mm | 下底长度D/mm | 下底角角度φ/(°) | 槽道数目/条 |
---|---|---|---|---|---|---|
D1.2-45-6 | 0.4 | 1.0 | 1.0 | 1.2 | 45 | 6 |
D1.2-55-6 | 0.4 | 1.0 | 1.0 | 1.2 | 55 | 6 |
D1.2-65-6 | 0.4 | 1.0 | 1.0 | 1.2 | 65 | 6 |
D1.0-45-7 | 0.4 | 1.0 | 1.0 | 1.0 | 45 | 7 |
D1.0-55-7 | 0.4 | 1.0 | 1.0 | 1.0 | 55 | 7 |
D1.0-65-7 | 0.4 | 1.0 | 1.0 | 1.0 | 65 | 7 |
D0.8-45-7 | 0.4 | 1.0 | 1.0 | 0.8 | 45 | 7 |
D0.8-55-7 | 0.4 | 1.0 | 1.0 | 0.8 | 55 | 7 |
D0.8-65-7 | 0.4 | 1.0 | 1.0 | 0.8 | 65 | 7 |
表1 微槽道表面的结构尺寸
Table 1 Structural dimensions of microchannel surfaces
序号 | 开口宽度W/mm | 槽道深度H/mm | 肋底宽度E/mm | 下底长度D/mm | 下底角角度φ/(°) | 槽道数目/条 |
---|---|---|---|---|---|---|
D1.2-45-6 | 0.4 | 1.0 | 1.0 | 1.2 | 45 | 6 |
D1.2-55-6 | 0.4 | 1.0 | 1.0 | 1.2 | 55 | 6 |
D1.2-65-6 | 0.4 | 1.0 | 1.0 | 1.2 | 65 | 6 |
D1.0-45-7 | 0.4 | 1.0 | 1.0 | 1.0 | 45 | 7 |
D1.0-55-7 | 0.4 | 1.0 | 1.0 | 1.0 | 55 | 7 |
D1.0-65-7 | 0.4 | 1.0 | 1.0 | 1.0 | 65 | 7 |
D0.8-45-7 | 0.4 | 1.0 | 1.0 | 0.8 | 45 | 7 |
D0.8-55-7 | 0.4 | 1.0 | 1.0 | 0.8 | 55 | 7 |
D0.8-65-7 | 0.4 | 1.0 | 1.0 | 0.8 | 65 | 7 |
图2 实验系统示意图1—蛇形冷凝管; 2—沸腾室;3—温度控制器;4—光源;5—上盖板; 6—保温外筒;7—功率控制器;8—保温材料;9 —聚四氟乙烯底板;10—主加热器;11—紫铜柱;12—安捷伦34970A数据采集仪;13—计算机;14— Phantom高速摄像机
Fig.2 Schematic diagram of experimental system
1 | Bombardieri C, Manfletti C. Influence of wall material on nucleate pool boiling of liquid nitrogen[J]. International Journal of Heat and Mass Transfer, 2016, 94: 1-8. |
2 | 徐治国, 赵长颖. 低孔密度泡沫金属的材质和厚度对池沸腾传热性能的影响[J]. 热科学与技术, 2013, 12(4): 295-301. |
Xu Z G, Zhao C Y. Material effect on pool boiling heat transfer of open-celled metal foams with low pore density[J]. Journal of Thermal Science and Technology, 2013, 12(4): 295-301. | |
3 | Zupančič M, Steinbücher M, Gregorčič P, et al. Enhanced pool-boiling heat transfer on laser-made hydrophobic/superhydrophilic polydimethylsiloxane-silica patterned surfaces[J]. Applied Thermal Engineering, 2015, 91: 288-297. |
4 | Ma X J, Cheng P. Dry spot dynamics and wet area fractions in pool boiling on micro-pillar and micro-cavity hydrophilic heaters: a 3D lattice Boltzmann phase-change study[J]. International Journal of Heat and Mass Transfer, 2019, 141: 407-418. |
5 | Kim D E, Yu D I, Jerng D W, et al. Review of boiling heat transfer enhancement on micro/nanostructured surfaces[J]. Experimental Thermal and Fluid Science, 2015, 66: 173-196. |
6 | Shoji M, Takagi Y. Bubbling features from a single artificial cavity[J]. International Journal of Heat and Mass Transfer, 2001, 44(14): 2763-2776. |
7 | Chen Y M, Groll M, Mertz R, et al. Pool boiling heat transfer of propane, isobutane and their mixtures on enhanced tubes with reentrant channels[J]. International Journal of Heat and Mass Transfer, 2005, 48(11): 2310-2322. |
8 | Raza M Q, Kumar N, Raj R. Experimental characterization and modeling of critical heat flux with subcooled foaming solution[J]. International Journal of Thermal Sciences, 2019, 141: 199-210. |
9 | Etedali S, Afrand M, Abdollahi A. Effect of different surfactants on the pool boiling heat transfer of SiO2/deionized water nanofluid on a copper surface[J]. International Journal of Thermal Sciences, 2019, 145: 105977. |
10 | Dahariya S, Betz A R. High pressure pool boiling: mechanisms for heat transfer enhancement and comparison to existing models[J]. International Journal of Heat and Mass Transfer, 2019, 141: 696-706. |
11 | 吴静波. 低压下浓盐水沸腾及强化传热的实验研究[D]. 大连: 大连理工大学, 2009. |
Wu J B. Experimental research in boiling heat transfer and enhancement of high concentrated brine at low pressure[D]. Dalian: Dalian University of Technology, 2009. | |
12 | 张永海, 薛艳芳, 魏进家, 等. 微重力下微结构表面池沸腾气泡动力学研究[J]. 工程热物理学报, 2013, 34(11): 2112-2115. |
Zhang Y H, Xue Y F, Wei J J, et al. Pool boiling heat transfer and bubble dynamics over micro-pin-finned surface under microgravity[J]. Journal of Engineering Thermophysics, 2013, 34(11): 2112-2115. | |
13 | Das A K, Das P K, Saha P. Performance of different structured surfaces in nucleate pool boiling[J]. Applied Thermal Engineering, 2009, 29(17/18): 3643-3653. |
14 | Liang G T, Mudawar I. Review of pool boiling enhancement by surface modification[J]. International Journal of Heat and Mass Transfer, 2019, 128: 892-933. |
15 | Yu C K, Lu D C. Pool boiling heat transfer on horizontal rectangular fin array in saturated FC-72[J]. International Journal of Heat and Mass Transfer, 2007, 50(17/18): 3624-3637. |
16 | Cooke D, Kandlikar S G. Effect of open microchannel geometry on pool boiling enhancement[J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 1004-1013. |
17 | 端震, 赵孝保, 董庆. 垂直矩形微槽群内部相变换热的实验研究[J]. 南京师范大学学报(工程技术版), 2008, 8(2): 32-35. |
Duan Z, Zhao X B, Dong Q. Experimental study on the phase-change heat transfer in vertically rectangular micro-capillary grooves[J]. Journal of Nanjing Normal University (Engineering and Technology Edition), 2008, 8(2): 32-35. | |
18 | 周述璋, 王焰新, 侯亭波, 等. 多孔微槽道复合结构的强化沸腾传热性能[J]. 华南理工大学学报(自然科学版), 2014, 42(7): 110-116. |
Zhou S Z, Wang Y X, Hou T B, et al. Enhanced boiling heat-transfer performance of porous microchannel composite structure[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(7): 110-116. | |
19 | Zhou P, Liu Z C, Liu W, et al. LBM simulates the effect of sole nucleate site geometry on pool boiling[J]. Applied Thermal Engineering, 2019, 160: 114027. |
20 | Das A K, Das P K, Saha P. Some investigations on the enhancement of boiling heat transfer from planer surface embedded with continuous open tunnels[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1422-1431. |
21 | Jaikumar A, Kandlikar S G. Enhanced pool boiling heat transfer mechanisms for selectively sintered open microchannels[J]. International Journal of Heat and Mass Transfer, 2015, 88: 652-661. |
22 | Deng D X, Wan W, Feng J Y, et al. Comparative experimental study on pool boiling performance of porous coating and solid structures with reentrant channels[J]. Applied Thermal Engineering, 2016, 107: 420-430. |
23 | Ha M, Graham S. Pool boiling enhancement using vapor channels in microporous surfaces[J]. International Journal of Heat and Mass Transfer, 2019, 143: 118532. |
24 | 周儒鸿, 纪献兵, 孔庆盼, 等. 表面润湿性影响池沸腾传热的研究进展[J]. 热能动力工程, 2019, 34(2): 1-8. |
Zhou R H, Ji X B, Kong Q P, et al. Research progress of pool boiling heat transferon different wettability surfaces[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(2): 1-8. | |
25 | Betz A R, Jenkins J, Kim C J, et al. Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 733-741. |
26 | Deng D X, Feng J Y, Huang Q S, et al. Pool boiling heat transfer of porous structures with reentrant cavities[J]. International Journal of Heat and Mass Transfer, 2016, 99: 556-568. |
27 | 郑晓欢. 多尺度与改性结构表面的沸腾传热特性研究[D]. 北京: 华北电力大学, 2017. |
Zheng X H. Study on boiling heat transfer characteristics of multi-scale and modified structural surface [D]. Beijing: North China Electric Power University, 2017. | |
28 | Li C H, Li T, Hodgins P, et al. Comparison study of liquid replenishing impacts on critical heat flux and heat transfer coefficient of nucleate pool boiling on multiscale modulated porous structures[J]. International Journal of Heat and Mass Transfer, 2011, 54(15/16): 3146-3155. |
29 | 李兰兰. 微纳米结构表面沸腾换热的实验研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2013. |
Li L L. Experimental study of pool boiling on micro and nano-structured surfaces[D]. Beijing: Graduate University of Chinese Academy of Sciences (Institute of Engineering Thermophysics), 2013. | |
30 | 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 320-327. |
Yang S M, Tao W Q. Heat Transfer[M]. Beijing: Higher Education Press, 2006: 320-327. | |
31 | Jaikumar A, Kandlikar S G. Ultra-high pool boiling performance and effect of channel width with selectively coated open microchannels[J]. International Journal of Heat and Mass Transfer, 2016, 95: 795-805. |
32 | 张楠. 微细通道多孔介质复合沸腾换热研究[D]. 郑州: 郑州大学, 2018. |
Zhang N. Experimental investigation of pool boiling heat transfer characteristics on microchannel with porous medium composite structure[D]. Zhengzhou: Zhengzhou University, 2018. | |
33 | 王现宝. 多尺度仿生交错润湿性表面沸腾传热性能及机理[D]. 长春: 吉林大学, 2015. |
Wang X B. Boiling heat transfer performance and mechanism of biomimetic multi-scale interlaced wettability surface[D]. Changchun: Jilin University, 2015. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[6] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[7] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[8] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[9] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[10] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[11] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[12] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[13] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[14] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[15] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||