化工学报 ›› 2019, Vol. 70 ›› Issue (6): 2153-2163.DOI: 10.11949/j.issn.0438-1157.20181523
收稿日期:
2018-12-27
修回日期:
2019-03-12
出版日期:
2019-06-05
发布日期:
2019-06-05
通讯作者:
肖杰
作者简介:
<named-content content-type="corresp-name">尚良超</named-content>(1994—),男,硕士研究生,<email>lcshang@stu.suda.edu.cn</email>
基金资助:
Liangchao SHANG(),Xiao Dong CHEN,Jie XIAO()
Received:
2018-12-27
Revised:
2019-03-12
Online:
2019-06-05
Published:
2019-06-05
Contact:
Jie XIAO
摘要:
喷雾干燥制粒有着广泛的应用。颗粒表面形貌的调控对提升颗粒品质起到至关重要的作用。本研究旨在建立分子尺度粗粒化模型,描述蒸发诱导下溶质的自组装行为,预测不同干燥条件下表面形貌的演变过程。文中建立的粗粒化网格Monte Carlo模型可以处理球形固体溶质,并充分考虑各物质之间相互作用及相变过程。开发的分析方法可以定量蒸发过程中液体残留率、颗粒分布与组装形貌。通过初步的二维系统模拟可以发现,溶剂不断蒸发过程中溶质逐渐移动,形成各种自组装结构。溶剂化学势越小,液体残留率越低。随着初始溶质浓度升高,最终溶质组装形貌从点状变为网状结构。不同的物质间相互作用也会导致紧密或松散的溶质分布。
中图分类号:
尚良超, 陈晓东, 肖杰. 喷雾干燥颗粒表面形貌形成过程粗粒化模拟[J]. 化工学报, 2019, 70(6): 2153-2163.
Liangchao SHANG, Xiao Dong CHEN, Jie XIAO. Coarse-grained simulation of surface morphology formation for spray dried particles[J]. CIESC Journal, 2019, 70(6): 2153-2163.
Case | D | C | μ 1 /k B T | ε 2,1 /k B T | ε 2,2 /k B T |
---|---|---|---|---|---|
base case | 19 | 40% | ?4.2 | 3 | 3.5 |
1 | 9 | 40% | ?4.2 | 3 | 3.5 |
2 | 29 | 40% | ?4.2 | 3 | 3.5 |
3 | 39 | 40% | ?4.2 | 3 | 3.5 |
4 | 19 | 10% | ?4.2 | 3 | 3.5 |
5 | 19 | 20% | ?4.2 | 3 | 3.5 |
6 | 19 | 30% | ?4.2 | 3 | 3.5 |
7 | 19 | 40% | ?4.1 | 3 | 3.5 |
8 | 19 | 40% | ?4.3 | 3 | 3.5 |
9 | 19 | 40% | ?4.4 | 3 | 3.5 |
10 | 19 | 40% | ?4.2 | 1 | 3.5 |
11 | 19 | 40% | ?4.2 | 2 | 3.5 |
12 | 19 | 40% | ?4.2 | 4 | 3.5 |
13 | 19 | 40% | ?4.2 | 3 | 2.5 |
14 | 19 | 40% | ?4.2 | 3 | 3 |
15 | 19 | 40% | ?4.2 | 3 | 4 |
表1 不同干燥条件下的模型参数
Table 1 Model parameters under different drying conditions
Case | D | C | μ 1 /k B T | ε 2,1 /k B T | ε 2,2 /k B T |
---|---|---|---|---|---|
base case | 19 | 40% | ?4.2 | 3 | 3.5 |
1 | 9 | 40% | ?4.2 | 3 | 3.5 |
2 | 29 | 40% | ?4.2 | 3 | 3.5 |
3 | 39 | 40% | ?4.2 | 3 | 3.5 |
4 | 19 | 10% | ?4.2 | 3 | 3.5 |
5 | 19 | 20% | ?4.2 | 3 | 3.5 |
6 | 19 | 30% | ?4.2 | 3 | 3.5 |
7 | 19 | 40% | ?4.1 | 3 | 3.5 |
8 | 19 | 40% | ?4.3 | 3 | 3.5 |
9 | 19 | 40% | ?4.4 | 3 | 3.5 |
10 | 19 | 40% | ?4.2 | 1 | 3.5 |
11 | 19 | 40% | ?4.2 | 2 | 3.5 |
12 | 19 | 40% | ?4.2 | 4 | 3.5 |
13 | 19 | 40% | ?4.2 | 3 | 2.5 |
14 | 19 | 40% | ?4.2 | 3 | 3 |
15 | 19 | 40% | ?4.2 | 3 | 4 |
1 | Maria I R . Microencapsulation by spray drying[J]. Drying Technology, 1998, 16(6): 1195-1236. |
2 | Kim E H J , Chen X D , Pearce D . Surface composition of industrial spray-dried milk powders(Ⅱ): Effects of spray drying conditions on the surface composition[J]. Journal of Food Engineering, 2009, 94(2): 169-181. |
3 | Liu W , Wu W D , Selomulya C , et al . Facile spray-drying assembly of uniform microencapsulates with tunable core-shell structures and release properties[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2011, 27(21): 12910-12915. |
4 | Waldron K , Wu W D , Wu Z , et al . Formation of monodisperse mesoporous silica microparticles via spray-drying[J]. Journal of Colloid and Interface Science, 2014, 418: 225-233. |
5 | Vehring R . Pharmaceutical particle engineering via spray drying[J]. Pharmaceutical Research, 2008, 25(5): 999-1022. |
6 | Vehring R , Foss W R , Lechuga-Ballesteros D . Particle formation in spray drying[J]. Journal of Aerosol Science, 2007, 38(7): 728-746. |
7 | Walton D E , Mumford C J . Spray dried products—characterization of particle morphology[J]. Chemical Engineering Research and Design, 1999, 77(1): 21-38. |
8 | Handscomb C S , Kraft M . Simulating the structural evolution of droplets following shell formation[J]. Chemical Engineering Science, 2010, 65(2): 713-725. |
9 | Nandiyanto A B D , Okuyama K . Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges[J]. Advanced Powder Technology, 2011, 22(1): 1-19. |
10 | Chen X D , Sidhu H , Nelson M . On the addition of protein (casein) to aqueous lactose as a drying aid in spray drying—theoretical surface composition[J]. Drying Technology, 2013, 31(13/14): 1504-1512. |
11 | Balgis R , Ernawati L , Ogi T , et al . Controlled surface topography of nanostructured particles prepared by spray-drying process[J]. AIChE Journal, 2017, 63(5): 1503-1511. |
12 | Nuzzo M , Sloth J , Brandner B , et al . Confocal Raman microscopy for mapping phase segregation in individually dried particles composed of lactose and macromolecules[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 481: 229-236. |
13 | Chen X D , Sidhu H , Nelson M . Theoretical probing of the phenomenon of the formation of the outermost surface layer of a multi-component particle, and the surface chemical composition after the rapid removal of water in spray drying[J]. Chemical Engineering Science, 2011, 66(24): 6375-6384. |
14 | Zellmer S , Garnweitner G , Breinlinger T , et al . Hierarchical structure formation of nanoparticulate spray-dried composite aggregates[J]. ACS Nano, 2015, 9(11): 10749-10757. |
15 | Xiao J , Chen X D . Multiscale modeling for surface composition of spray-dried two-component powders[J]. AIChE Journal, 2014, 60(7): 2416-2427. |
16 | Patel K C , Chen X D . Prediction of spray-dried product quality using two simple drying kinetics models[J]. Journal of Food Process Engineering, 2005, 28(6): 567-594. |
17 | Jubaer H , Afshar S , Xiao J , et al . On the importance of droplet shrinkage in CFD-modeling of spray drying[J]. Drying Technology, 2017, 36(15): 1-17. |
18 | Adhikari B , Howes T , Bhandari B R .Use of solute fixed coordinate system and method of lines for prediction of drying kinetics and surface stickiness of single droplet during convective drying[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(5): 405-419. |
19 | Mezhericher M , Levy A , Borde I . Theoretical models of single droplet drying kinetics: a review[J]. Drying Technology, 2010, 28(2): 278-293. |
20 | Porowska A , Dosta M , Fries L , et al . Predicting the surface composition of a spray-dried particle by modelling component reorganization in a drying droplet[J]. Chemical Engineering Research and Design, 2016, 110: 131-140. |
21 | Handscomb C S , Kraft M , Bayly A E . A new model for the drying of droplets containing suspended solids[J]. Chemical Engineering Science, 2009, 64(4): 628-637. |
22 | Seydel P , Blömer J , Bertling J . Modeling particle formation at spray drying using population balances[J]. Drying Technology, 2006, 24(2): 137-146. |
23 | Wang S , Langrish T A G . A distributed parameter model for particles in the spray drying process[J]. Advanced Powder Technology, 2009, 20(3): 220-226. |
24 | Xiao J , Zhang H , Wu W D , et al . An improved calculation procedure on surface composition of spray-dried protein-sugar two-component systems[J]. Drying Technology, 2015, 33(7): 817-821. |
25 | Voronov R S , Papavassiliou D V , Lee L L . Boundary slip and wetting properties of interfaces: correlation of the contact angle with the slip length[J]. The Journal of Chemical Physics, 2006, 124(20): 204701. |
26 | Koishi T , Yasuoka K , Fujikawa S , et al . Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(21): 8435-8440. |
27 | Hong S D , Ha M Y , Balachandar S . Static and dynamic contact angles of water droplet on a solid surface using molecular dynamics simulation[J]. Journal of Colloid and Interface Science, 2009, 339(1): 187-195. |
28 | Rabani E , Reichman D R , Geissler P L , et al . Drying-mediated self-assembly of nanoparticles[J]. Nature, 2003, 426(6964): 271-274. |
29 | Ge G , Brus L . Evidence for spinodal phase separation in two-dimensional nanocrystal self-assembly[J]. Journal of Physical Chemistry B, 2000, 104(41): 9573-9575. |
30 | Tang J , Ge G , Brus L E . Gas-liquid-solid phase transition model for two-dimensional nanocrystal self-assembly on graphite[J]. Journal of Physical Chemistry B, 2002, 106(22): 5653-5658. |
31 | Sztrum C G , Rabani E . Out-of-equilibrium self-assembly of binary mixtures of nanoparticles[J]. Advanced Materials, 2006, 18(5): 565-571. |
32 | Sztrum C G , Hod O , Rabani E . Self-assembly of nanoparticles in three-dimensions: formation of stalagmites[J]. The Journal of Physical Chemistry, B, 2005, 109(14): 6741-6747. |
33 | Stannard A . Dewetting-mediated pattern formation in nanoparticle assemblies[J]. Journal of Physics. Condensed Matter, 2011, 23(8): 083001. |
34 | Tagliabue A , Izzo L , Mella M . Out of equilibrium self-assembly of Janus nanoparticles: steering it from disordered amorphous to 2D patterned aggregates [J]. Langmuir, 2016, 32(48): 12934-12946. |
[1] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[2] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[3] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[4] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[5] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[6] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[7] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[8] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[9] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[10] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[11] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[12] | 何汉兵, 刘真, 陈勇, 王小锋, 曾婧. 直写成型电极锰氧化物粉末的合成与浆料调控[J]. 化工学报, 2023, 74(5): 2239-2247. |
[13] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[14] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[15] | 魏进家, 刘蕾, 杨小平. 面向高热流电子器件散热的环路热管研究进展[J]. 化工学报, 2023, 74(1): 60-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||