化工学报 ›› 2019, Vol. 70 ›› Issue (6): 2147-2152.DOI: 10.11949/j.issn.0438-1157.20181095

• 流体力学与传递现象 • 上一篇    下一篇

基于反扰动非平衡分子动力学的纳米流体导热增强机理研究

陈巨辉1(),韩坤1,王帅2,李铭坤1,陈纪元1,马明1   

  1. 1. 哈尔滨理工大学机械动力工程学院,黑龙江 哈尔滨 150070
    2. 哈尔滨工业大学能源科学与工程学院,黑龙江 哈尔滨 150001
  • 收稿日期:2018-09-27 修回日期:2019-03-21 出版日期:2019-06-05 发布日期:2019-06-05
  • 通讯作者: 陈巨辉
  • 基金资助:
    黑龙江省普通高校基本科研业务费专项资金(LGY2018JC039);哈尔滨理工大学青年拔尖创新人才培养计划(201504)

Study on thermal conductive enhancement mechanism of nanofluid based on anti-disturbance non-equilibrium molecular dynamics

Juhui CHEN1(),Kun HAN1,Shuai WANG2,Mingkun LI1,Jiyuan CHEN1,Ming MA1   

  1. 1. Mechanical Power & Engineering College, Harbin University of Science and Technology, Harbin 150070, Heilongjiang, China
    2. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
  • Received:2018-09-27 Revised:2019-03-21 Online:2019-06-05 Published:2019-06-05
  • Contact: Juhui CHEN

摘要:

相较于水、乙二醇等常规流体,纳米流体出色的传热效果使其成为近十年来研究的热点之一。利用一种反扰动非平衡分子动力学方法对纳米流体的导热增强机理进行了模拟研究。在基液Ar 中加入 Cu 纳米颗粒后, 纳米流体的热通量和热导率均发生了不同程度的改变,纳米颗粒体积分数的变化,在一定程度上改变了纳米流体内部的能量传递过程。进一步分析了纳米流体热导率强化的微观作用机理,发现纳米颗粒的加入,使得纳米流体的微观结构具有了类似晶体的微观结构特性,在颗粒尺寸较小的情况下,流体内部受温度梯度作用效应明显。

关键词: 纳米流体, 热导率, 纳米粒子, 分子模拟, 两相流

Abstract:

Compared with conventional fluids such as water and ethylene glycol, the excellent heat transfer effect of nanofluids has made it one of the hotspots of research in the past decade. In this paper, the heat conduction enhancement mechanism of nanofluids is simulated by a reverse non equilibrium molecular dynamics method. The heat flux density and thermal conductivity of nanofluids change with the addition of Cu nanoparticles in Ar, and the volume fraction of nanoparticles changes the energy transfer process in nanofluids to a certain extent. Furthermore, the microscopic mechanism of the enhancement of thermal conductivity of nanofluids is analyzed. It was found that the addition of nanoparticles made the microstructure of nanofluids similar to that of crystals. Under the condition of smaller particle size, the effect of temperature gradient on the fluid is obvious.

Key words: nanofluids, thermal conductivity, nanoparticles, molecular simulation, two-phase flow

中图分类号: