1 |
ChoiS U S, EastmanJ A. Enhancing thermal conductivity of fluids with nanoparticles[J]. ASME FED, 1995, 231(1): 99-105
|
2 |
WangX, JingD. Determination of thermal conductivity of interfacial layer in nanofluids by equilibrium molecular dynamics simulation[J]. International Journal of Heat and Mass Transfer, 2019, 128: 199-207.
|
3 |
CuiW, ShenZ, YangJ, et al. On the increased heat conduction and changed flow boundary-layer of nanofluids by molecular dynamics simulation[J]. Digest Journal of Nanomaterials & Biostructures, 2015, 10(1): 207-219.
|
4 |
MilaneseM, IacobazziF, ColangeloG, et al. An investigation of layering phenomenon at the liquid–solid interface in Cu and CuO based nanofluids[J]. International Journal of Heat & Mass Transfer, 2016, 103: 564-571.
|
5 |
BabaeiH, KeblinskiP, KhodadadiJ M. A proof for insignificant effect of Brownian motion-induced micro-convection on thermal conductivity of nanofluids by utilizing molecular dynamics simulations[J]. Journal of Applied Physics, 2013, 113(8): 084302.
|
6 |
崔文政, 沈照杰, 毛东旭, 等. 纳米流体中纳米颗粒微运动的分子动力学模拟[J]. 化工学报, 2017, 68(S1): 48-53.
|
|
CuiW Z, ShenZ J, MaoD X, et al. Micro-movements of nanoparticles in nanofluids: molecular dynamics simulation[J].CIESC Journal, 2017, 68(S1): 48-53.
|
7 |
MaheshwaryP B, HandaC C, NemadeK R. A comprehensive study of effect of concentration, particle size and particle shape on thermal conductivity of titania/water based nanofluid[J]. Applied Thermal Engineering, 2017, 119: 79-88.
|
8 |
SedighiM, MohebbiA. Investigation of nanoparticle aggregation effect on thermal properties of nanofluid by a combined equilibrium and non-equilibrium molecular dynamics simulation[J]. Journal of Molecular Liquids, 2014, 197(9): 14-22.
|
9 |
LouZ, YangM. Molecular dynamics simulations on the shear viscosity of Al2O3 nanofluids[J]. Computers & Fluids, 2015, 117: 17-23.
|
10 |
KangH, ZhangY, YangM, et al. Nonequilibrium molecular dynamics simulation of coupling between nanoparticles and base-fluid in a nanofluid[J]. Physics Letters A, 2012, 376(4): 521-524.
|
11 |
LingL, ZhangY, MaH, et al. Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids[J]. Journal of Nanoparticle Research, 2010, 12(3): 811-821.
|
12 |
AchhalE M, JabraouiH, ZeroualS, et al. Modeling and simulations of nanofluids using classical molecular dynamics: particle size and temperature effects on thermal conductivity[J]. Advanced Powder Technology, 2018, 29(10): 2434-2439.
|
13 |
JavanmardiM J, JafarpurK. A molecular dynamics simulation for thermal conductivity evaluation of carbon nanotube-water nanofluids[J]. Journal of Heat Transfer, 2013, 135(4): 042401.
|
14 |
AimoliC G, MaginnE J, AbreuC R A. Transport properties of carbon dioxide and methane from molecular dynamics simulations[J]. Journal of Chemical Physics, 2014, 141(13): 11131.
|
15 |
BedrovD, SmithG D. Thermal conductivity of molecular fluids from molecular dynamics simulations: application of a new imposed-flux method[J]. Journal of Chemical Physics, 2000, 113(18): 8080-8084.
|
16 |
DystheD K, FuchsA H, RousseauB. Fluid transport properties by equilibrium molecular dynamics(Ⅰ): Methodology at extreme fluid states[J]. The Journal of Chemical Physics, 1999, 110(8): 4047-4059.
|
17 |
IkeshojiT, HafskjoldB. Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface[J]. Molecular Physics, 1994, 81(2): 251-261.
|
18 |
HafskjoldB, IkeshojiT, RatkjeS K. On the molecular mechanism of thermal diffusion in liquids[J]. Molecular Physics, 1993, 80(6): 1389-1412.
|
19 |
Müller-PlatheF. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity[J]. Journal of Chemical Physics, 1997, 106(14): 6082-6085.
|
20 |
ArtolaP A, RousseauB. Thermal diffusion in simple liquid mixtures: what have we learnt from molecular dynamics simulations?[J]. Molecular Physics, 2013, 111(22/23): 3394-3403.
|
21 |
ZhangM, Müller-PlatheF. Reverse nonequilibrium molecular-dynamics calculation of the Soret coefficient in liquid benzene/cyclohexane mixtures[J]. The Journal of Chemical Physics, 2005, 123(12): 124502.
|
22 |
ZhangM. Thermal diffusion in liquid mixtures and polymer solutions by molecular dynamics simulations [D]. Darmstadt: Technischen Universität, 2006.
|
23 |
ReithD, Müller-PlatheF. On the nature of thermal diffusion in binary Lennard-Jones liquids[J]. The Journal of Chemical Physics, 2000, 112(5): 2436-2443.
|
24 |
MohebbiA. Prediction of specific heat and thermal conductivity of nanofluids by a combined equilibrium and nonequilibrium molecular dynamics simulation[J]. Journal of Molecular Liquids, 2012, 175(22): 51-58.
|
25 |
TopalI, ServantieJ. Molecular dynamics study of the thermal conductivity in nanofluids[J]. Chemical Physics, 2019, 516: 147-151.
|
26 |
HuC, BaiM, LvJ, et al. An investigation on the flow and heat transfer characteristics of nanofluids by nonequilibrium molecular dynamics simulations[J]. Numerical Heat Transfer Part B Fundamentals, 2016, 70(2): 152-163.
|
27 |
CuiW, ShenZ, YangJ, et al. Molecular dynamics simulation on the microstructure of absorption layer at the liquid solid interface in nanofluids[J]. International Communications in Heat and Mass Transfer, 2016, 71: 75-85.
|
28 |
SarkarS, SelvamR P. Thermal conductivity computation of nanofluids by equilibrium molecular dynamics simulation: nanoparticle loading and temperature effect[C]//MRS Proceedings. 2007.
|
29 |
TengK L, HsiaoP Y, HungS W, et al. Enhanced thermal conductivity of nanofluids diagnosis by molecular dynamics simulations[J]. Journal of Nanoscience & Nanotechnology, 2008, 8(7): 3710-3718.
|
30 |
HamiltonR L, CrosserO K. Thermal conductivity of heterogeneous two-component systems[J]. Ind. Eng. Chem. Fundam., 1962, 1(3): 27-40.
|