化工学报 ›› 2019, Vol. 70 ›› Issue (S1): 202-210.DOI: 10.11949/j.issn.0438-1157.20181393
收稿日期:
2018-11-21
修回日期:
2018-11-26
出版日期:
2019-03-31
发布日期:
2019-03-31
通讯作者:
郑成
作者简介:
<named-content content-type="corresp-name">彭思玉</named-content>(1994—),女,硕士研究生,<email>575570774@qq.com</email>|郑成(1955—),男,博士,教授,<email>zhengcheng5512@163.com</email>
基金资助:
Siyu PENG1(),Cheng ZHENG1,2(),Taoyan MAO1,Yuan WEI1,Huafeng SONG1
Received:
2018-11-21
Revised:
2018-11-26
Online:
2019-03-31
Published:
2019-03-31
Contact:
Cheng ZHENG
摘要:
以十八烷基二乙醇胺、1,3-二溴丙烷为主要原料,在微波高压条件下进行季铵化反应合成了一种双子表面活性剂双十八烷基四羟乙基二溴丙二铵(DTDD),通过红外光谱(IR)和核磁共振(1H NMR)对DTDD进行了表征,并用液相色谱-质谱联用(LC-MS)测定了其纯度。通过单因素、正交实验得到了微波法合成目标产物的最佳合成条件为:设置微波功率为900 W,反应时间8 h,反应温度为140℃,产品收率达92%以上。与传统加热法对比, 使用微波合成法反应速率大大提高。性能测试结果表明:对比单链季铵盐(OMDAB),目标产物DTDD具有良好的表面性能,其临界胶束浓度为0.087 g/L,相应的表面张力γ(CMC)为31.09 mN/m。
中图分类号:
彭思玉, 郑成, 毛桃嫣, 魏渊, 宋华峰. 双十八烷基四羟乙基二溴丙二铵的微波合成及其性能研究[J]. 化工学报, 2019, 70(S1): 202-210.
Siyu PENG, Cheng ZHENG, Taoyan MAO, Yuan WEI, Huafeng SONG. Microwave synthesis and properties of dioctadecyl tetrahydroxyethyl dibromopropane diammonium[J]. CIESC Journal, 2019, 70(S1): 202-210.
溶剂 | 收率/% |
---|---|
乙醇 | 53.14 |
正丙醇 | 56.26 |
异丙醇 | 48.93 |
甲醇 | 59.15 |
正丁醇 | 64.54 |
表1 溶剂对收率的影响
Table 1 Effect of different solvents on product yield
溶剂 | 收率/% |
---|---|
乙醇 | 53.14 |
正丙醇 | 56.26 |
异丙醇 | 48.93 |
甲醇 | 59.15 |
正丁醇 | 64.54 |
水平 | A(功率)/W | B(反应时间)/ h | C(温度)/℃ |
---|---|---|---|
1 | 700 | 6 | 130 |
2 | 800 | 7 | 140 |
3 | 900 | 8 | 150 |
表2 正交实验因素水平表
Table 2 Factors and levels of orthogonal experiments
水平 | A(功率)/W | B(反应时间)/ h | C(温度)/℃ |
---|---|---|---|
1 | 700 | 6 | 130 |
2 | 800 | 7 | 140 |
3 | 900 | 8 | 150 |
实验号 | A | B | C | 收率/ % | |
---|---|---|---|---|---|
1 | 700 | 6 | 130 | 90.11 | |
2 | 700 | 7 | 140 | 91.83 | |
3 | 700 | 8 | 150 | 90.72 | |
4 | 800 | 6 | 140 | 92.03 | |
5 | 800 | 7 | 150 | 90.74 | |
6 | 800 | 8 | 130 | 92.04 | |
7 | 900 | 6 | 150 | 92.27 | |
8 | 900 | 7 | 130 | 92.00 | |
9 | 900 | 8 | 140 | 92.22 | |
K1 | 272.66 | 274.41 | 274.15 | ||
K2 | 274.81 | 274.57 | 276.08 | ||
K3 | 276.49 | 274.98 | 273.73 | ||
k1 | 90.89 | 91.47 | 91.38 | ||
k2 | 91.6 | 91.52 | 92.03 | ||
k3 | 92.16 | 91.66 | 91.24 | ||
极差R | 3.83 | 0.57 | 2.35 | ||
因素:主→次 | A→C→B | ||||
最优方案 | A3B3C2 900 W, 8 h, 140℃ | ||||
重复实验 | 平均收率: 92.38% |
表3 正交实验方案与结果
Table 3 Program and result of orthogonal experiments
实验号 | A | B | C | 收率/ % | |
---|---|---|---|---|---|
1 | 700 | 6 | 130 | 90.11 | |
2 | 700 | 7 | 140 | 91.83 | |
3 | 700 | 8 | 150 | 90.72 | |
4 | 800 | 6 | 140 | 92.03 | |
5 | 800 | 7 | 150 | 90.74 | |
6 | 800 | 8 | 130 | 92.04 | |
7 | 900 | 6 | 150 | 92.27 | |
8 | 900 | 7 | 130 | 92.00 | |
9 | 900 | 8 | 140 | 92.22 | |
K1 | 272.66 | 274.41 | 274.15 | ||
K2 | 274.81 | 274.57 | 276.08 | ||
K3 | 276.49 | 274.98 | 273.73 | ||
k1 | 90.89 | 91.47 | 91.38 | ||
k2 | 91.6 | 91.52 | 92.03 | ||
k3 | 92.16 | 91.66 | 91.24 | ||
极差R | 3.83 | 0.57 | 2.35 | ||
因素:主→次 | A→C→B | ||||
最优方案 | A3B3C2 900 W, 8 h, 140℃ | ||||
重复实验 | 平均收率: 92.38% |
合成方法 | 反应时间/h | 收率/% |
---|---|---|
微波反应法 | 4 | 64.54 |
传统加热法 | 8 | 36.51 |
表4 不同合成工艺方法的比较
Table 4 Comparison of various techniques
合成方法 | 反应时间/h | 收率/% |
---|---|---|
微波反应法 | 4 | 64.54 |
传统加热法 | 8 | 36.51 |
样品 | 乳化时间 | ||
---|---|---|---|
煤油 | 苯 | 松节油 | |
DTDD | 7 min 47 s | 32 min10 s | 1 h 20 min |
OMDAB | 7 min10 s | 19 min 6 s | 1 h 2 min |
表5 不同种类表面活性剂溶液对各种机油相的乳化时间
Table 5 Emulsification time of various surfactant solutions for various lubricating oil phases
样品 | 乳化时间 | ||
---|---|---|---|
煤油 | 苯 | 松节油 | |
DTDD | 7 min 47 s | 32 min10 s | 1 h 20 min |
OMDAB | 7 min10 s | 19 min 6 s | 1 h 2 min |
样品 | 泡沫高度/cm | 泡沫稳定性/% | |
---|---|---|---|
0min | 5min | ||
DTDD | 15.9 | 15.1 | 95.0 |
OMDAB | 10.1 | 9.0 | 89.1 |
表6 不同表面活性剂的泡沫性能测试结果
Table 6 Foam performance test results for different surfactants
样品 | 泡沫高度/cm | 泡沫稳定性/% | |
---|---|---|---|
0min | 5min | ||
DTDD | 15.9 | 15.1 | 95.0 |
OMDAB | 10.1 | 9.0 | 89.1 |
1 | JiX, TianM, WangY. Temperature-induced aggregate transitions in mixtures of cationic ammonium gemini surfactant with anionic glutamic acid surfactant in aqueous solution[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2016, 32(4): 972-981. |
2 | MobinM, AslamR, AslamJ. Non toxic biodegradable cationic gemini surfactants as novel corrosion inhibitor for mild steel in hydrochloric acid medium and synergistic effect of sodium salicylate: experimental and theoretical approach[J]. Materials Chemistry & Physics, 2017, 191: 151-167. |
3 | ZhouY, WangZ, HursthouseA, et al. Gemini surfactant-modified activated carbon for remediation of hexavalent chromium from water[J]. Water, 2018, 10(1): 91. |
4 | BrunsveldL, SchillJ, van DunS, et al. Synthesis and self-assembly of bay-substituted perylene diimide gemini-type surfactants as off-on fluorescent probes for lipid bilayers[J]. Chemistry - A European Journal, 2018, 24(30): 7734-7741. |
5 | KumarA, BanjareM K, SinhaS, et al. Imidazolium-based ionic liquid as modulator of physicochemical properties of cationic, anionic, nonionic, and gemini surfactants[J]. Journal of Surfactants & Detergents, 2018, 21(3): 355-366. |
6 | AsadovZ H, AhmadovaG A, RahimovR A, et al. Effect of spacer nature on surface properties of new counterion coupled gemini surfactants based on dodecyldiisopropylol amine and dicarboxylic acids[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2018, 550: 115-122. |
7 | El-SaidW A, MoharramA S, HusseinE M, et al. Design, synthesis, anticorrosion efficiency, and applications of novel Gemini surfactants for preparation of small-sized hollow spheres mesoporous silica nanoparticles[J]. Materials Chemistry & Physics, 2018, 211: 123-136. |
8 | 聂红艳, 徐宝财, 周雅文. 特种表面活性剂和功能性表面活性剂(Ⅵ): 双子表面活性剂的性质及应用[J]. 日用化学工业, 2009, 39(5): 348-353. |
NieH Y, XuB C, ZhouY W. Special surfactants and functional surfactants(Ⅵ): Properties and application of gemini surfactants[J]. China Surfactant Detergent & Cosmetics, 2009, 39(5): 348-353. | |
9 | 高阳, 刘佳. 单链型苯并咪唑阳离子与双子型苯并咪唑阳离子表面活性剂的性能比较[J]. 工程技术研究, 2017, (6): 241-242. |
GaoY, LiuJ. Comparison of the properties of benzimidazole cationic imidazoles and benzimidazole cationic surfactants[J]. Engineering and Technological Research, 2017, (6): 241-242. | |
10 | FaureD, GravierJ, LabrotT, et al. Photoinduced morphism of gemini surfactant aggregates[J]. Chemical Communications, 2005, (9): 1167-1169. |
11 | ChangH, WangY, CuiY, et al. Equilibrium and dynamic surface tension properties of Gemini quaternary ammonium salt surfactants with hydroxyl[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2016, 500: 230-238. |
12 | XuQ, WangL, XingF. Synthesis and properties of dissymmetric gemini surfactants[J]. Journal of Surfactants & Detergents, 2011, 14(1): 85-90. |
13 | 卢庆祥, 傅式洲, 尹宝霖, 等. 季铵盐型双子表面活性剂的合成和性能[J]. 日用化学工业, 2009, 39(2): 81-84. |
LuQ X, FuS Z, YinB L, et al. Synthesis and properties of quaternary ammonium Gemini surfactants[J]. China Surfactant Detergent & Cosmetics, 2009, 39(2): 81-84. | |
14 | 郭乃妮, 郑敏燕, 杨连利. 季铵盐阳离子双酯表面活性剂CDESA的合成研究[J]. 化学研究与应用, 2018, 30(1): 105-109. |
GuoN N, ZhengM Y, YangL L. Research on synthesis of quaternary ammonium salt cationic diester surfactants CDESA[J]. Chemical Research and Application, 2018, 30(1): 105-109. | |
15 | NeochoritisC G, ZarganestzitzikasT, TsoleridisC A, et al. One-pot microwave assisted synthesis under green chemistry conditions, antioxidant screening, and cytotoxicity assessments of benzimidazole Schiff bases and pyrimido[1,2-a]benzimidazol-3(4H)-ones[J]. European Journal of Medicinal Chemistry, 2011, 46(1): 297-306. |
16 | 毛展. 微波辅助非均相催化剂用于绿色有机合成的研究[D]. 上海: 上海师范大学, 2016. |
MaoZ. Microwave-assisted heterogeneous catalysts for green organic synthesis[D]. Shanghai: Shanghai Normal University, 2016. | |
17 | 胡雪原. 离子液体和微波技术在绿色有机合成中的应用[D]. 新乡: 河南师范大学, 2005. |
HuX Y. Application of ionic liquid and microwave technology in green organic synthesis[D]. Xinxiang: Henan Normal University, 2005. | |
18 | ErganB T, BayramogluM. Investigation of the microwave effect: a new approach for the solvent effect on the microwave-assisted decomposition reaction of 2,2′-azobis(isobutyronitrile)[J]. Industrial & Engineering Chemistry Research, 2014, 53(33): 13016-13022. |
19 | LinJ, ZhuM, WuX, et al. Microwave-assisted synthesis of trisiloxane superspreader and its superspreading behavior on plant leaves surfaces[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2016, 511: 190-200. |
20 | UmraoS, GuptaT K, KumarS, et al. Microwave-assisted synthesis of boron and nitrogen co-doped reduced graphene oxide for the protection of electromagnetic radiation in Ku-band[J]. ACS Applied Materials & Interfaces, 2015, 7(35): 19831-19842. |
21 | 韦星船, 郑成, 刘晓国, 等. 一种季铵盐双子表面活性剂的微波合成及性能研究[J]. 化学研究与应用, 2009, 21(3): 338-343. |
WeiX C, ZhengC, LiuX G, et al. Microwave synthesis and properties of a quaternary ammonium Gemini surfactant[J]. Chemical Research and Application, 2009, 21(3): 338-343. | |
22 | 孙莉, 张强, 李春义, 等. 双子季铵盐的静态合成及表征[J]. 化学试剂, 2015, 37(10): 913-915. |
ShunL, ZhangQ, LiC Y, et al. Static synthesis and characterization of cationic Gemini surfactants[J]. Chemical Reagents, 2015, 37(10): 913-915. | |
23 | 程文静, 郑成, 毛桃嫣, 等. 十八烷基甲基二羟乙基溴化铵的微波合成及性能[J]. 化工学报, 2011, 62(2): 566-573. |
ChengW J, ZhengC, MaoT Y, et al. Microwave synthesis technique and properties of octadecylmethyldihydroxyethyl ammonium bromide[J]. CIESC Journal, 2011, 62(2): 566-573. | |
24 | 于涛, 刘华沙, 王超群, 等. 烷基芳基磺酸钠对烷烃的乳化性能[J]. 应用化学, 2011, 28(5): 560-564. |
YuT, LiuH S, WangC Q, et al. Sodium alkyl sulfonate emulsifying performance on alkanes[J]. Chinese Journal of Applied Chemistry, 2011, 28(5): 560-564. | |
25 | 吕彤. 表面活性剂合成技术[M]. 北京: 化学工业出版社, 2016: 133. |
LyuT. Surfactant Synthesis Technology[M]. Beijing: Chemical Industry Press, 2016: 133. | |
26 | BekrekV, NevecnT. A study of effect of temperature on the influence of medium on the reaction of triethylamine with ethyl iodide[J]. Collection of Czechoslovak Chemical Communications, 1991, 56(4): 874-879. |
27 | 冯刚. 微波辅助有机反应及微波合成中的“非热效应”研究[D]. 重庆: 重庆大学, 2009. |
FengG. Microwave-assisted organic reactions and “non-thermal effects” in microwave synthesis[D]. Chongqing: Chongqing University, 2009. | |
28 | AlcaldeM A, JoverA, MeijideF, et al. Synthesis and characterization of a new gemini surfactant derived from 3α,12α-dihydroxy-5β-cholan-24-amine (steroid residue) and ethylenediamintetraacetic acid (spacer)[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2008, 24(12): 6060-6066. |
29 | HanL, YeZ, ChenH, et al. The interfacial tension between cationic gemini surfactant solution and crude oil[J]. Journal of Surfactants & Detergents, 2009, 12(3): 185-190. |
30 | 李晓萍, 金向军. Gemini表面活性剂的结构特性及其应用[J]. 白城师范学院学报, 2006, 20(4): 29-31. |
LiX P, JinX J. Structural properties of Gemini surfactants and their applications[J]. Journal of Baicheng Normal University, 2006, 20(4): 29-31. | |
31 | 王丽艳, 赵明, 邢凤兰, 等. 双子表面活性剂[M]. 北京: 化学工业出版社, 2013: 33. |
WangL Y, ZhaoM, XingF L, et al. Gemini Surfactants[M]. Beijing: Chemical Industry Press, 2013: 33. |
[1] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[2] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[3] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[4] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[5] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[6] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[7] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[8] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[9] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[10] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[11] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[12] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[13] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[14] | 李彬, 徐正虎, 姜爽, 张天永. 双氧水催化氧化法清洁高效合成促进剂CBS[J]. 化工学报, 2023, 74(7): 2919-2925. |
[15] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||