化工学报 ›› 2020, Vol. 71 ›› Issue (10): 4611-4620.DOI: 10.11949/0438-1157.20200675
收稿日期:
2020-06-02
修回日期:
2020-07-29
出版日期:
2020-10-05
发布日期:
2020-10-05
通讯作者:
刘作华
作者简介:
刘作华(1973—),男,博士,教授,基金资助:
Zuohua LIU1(),Chuang WANG1,Wei SUN1,Changyuan TAO1,Yundong WANG2
Received:
2020-06-02
Revised:
2020-07-29
Online:
2020-10-05
Published:
2020-10-05
Contact:
Zuohua LIU
摘要:
传统的混合澄清槽一般采用刚性搅拌桨来实现液-液两相的混合萃取,普遍存在效率低、能耗高等问题。将一种弹性搅拌桨应用在混合澄清槽中,以强化液-液两相混沌混合及分散特性。以最大Lyapunov指数(LLE)和多尺度熵(MSE)表征体系混沌状态,以分散相液滴粒径分布、Sauter平均粒径(D32)等表征分散效果,分别研究了桨叶类型(弹性搅拌桨、刚柔组合桨及刚性桨)、弹簧长度、线径、外径等因素对混沌混合效果和分散特性的影响。结果表明,相比较刚性搅拌桨和刚柔组合搅拌桨,弹性搅拌桨通过弹簧的形变和储能作用,强化了搅拌能量的传递方式,提高了分散相的分散效果,有利于液液两相的混沌混合,在搅拌转速N=200 r/min、弹簧线径为0.6 mm、弹簧相对长度为1.2、弹簧外径为7 mm时,弹性搅拌桨体系的LLE和MSE更大,且MSE值波动最强;同时,各搅拌体系内分散相平均粒径D32与转速呈对数线性关系,弹性搅拌桨体系内分散相液滴尺寸更小且数量更多。
中图分类号:
刘作华, 王闯, 孙伟, 陶长元, 王运东. 弹性搅拌桨强化液-液两相混沌混合及液滴分散特性的研究[J]. 化工学报, 2020, 71(10): 4611-4620.
Zuohua LIU, Chuang WANG, Wei SUN, Changyuan TAO, Yundong WANG. Chaotic mixing and droplet dispersion characteristics of liquid - liquid with elastic combined impeller[J]. CIESC Journal, 2020, 71(10): 4611-4620.
Material | Density/(kg/m3) | Viscosity/(Pa?s) |
---|---|---|
water | 998.2 | 0.0010 |
kerosene | 780.0 | 0.0024 |
表1 实验介质物理性质
Table1 Physical property of mediums
Material | Density/(kg/m3) | Viscosity/(Pa?s) |
---|---|---|
water | 998.2 | 0.0010 |
kerosene | 780.0 | 0.0024 |
图2 SOPAT测量系统1—optical probe; 2—probe housing; 3—communication cable; 4—central box; 5—cable; 6—computer with SOPAT software
Fig.2 SOPAT measurement system
1 | 袁孝竞, 干爱华, 田桂林, 等. 规整填料塔在国内的应用[J]. 石油化工设计, 1996, 13(2): 55. |
Yuan X J, Gan A H, Tian G L, et al. Structure packed column technology and its applications[J]. Petrochemical Design, 1996, 13(2): 55. | |
2 | 费维扬, 温晓明, 陈德宏, 等. 填料萃取塔设计和应用和若干特点[J]. 炼油设计, 1998, 28(2): 49-52. |
Fei W Y, Wen X M, Chen D H, et al. Characteristics of design and application of packed extraction tower[J]. Petroleum Refinery Engineering, 1998, 28(2): 49-52. | |
3 | 夏清, 陈常贵. 化工原理(下)[M]. 天津: 天津大学出版社, 2005. |
Xia Q, Chen C G. Principles of Chemical Engineering (Ⅱ) [M]. Tianjin: Tianjin University Press, 2005. | |
4 | Srilatha C, Savant A R, Patwardhan A W, et al. Head-flow characteristics of pump-mix mixers[J]. Chemical Engineering & Processing: Process Intensification, 2008, 47(9): 1678-1692. |
5 | Schlesinger M E, King M J, Sole K C, et al. Extractive Metallurgy of Copper [M]. 5th ed. Elsevier, 2011. |
6 | Singh K K, Mahajani S M, Shenoy K T, et al. CFD modeling of pump-mix action in continuous flow stirred tank[J]. American Institute of Chemical Engineers Journal, 2010, 54(1): 42-55. |
7 | Singh K K, Mahajani S M, Shenoy K T, et al. CFD modeling of pilot-scale pump-mixer: single-phase head and power characteristics[J]. Chemical Engineering Science, 2007, 62(5): 1308-1322. |
8 | Shahcheraghi S H, Khayati G R, Ranjbar M. Improved dynamic modeling and simulation of an industrial copper solvent extraction process[J]. Hydrometallurgy, 2016, 166: 266-278. |
9 | 叶思施, 唐巧, 乔军帅, 等. P507-煤油体系物性测量及其在澄清槽内的CFD模拟[J]. 化工学报, 2016, 67(2): 458-468. |
Ye S S, Tang Q, Qiao J S, et al. Physical properties measurements and CFD simulations in settler of different P507-kerosene systems [J]. CIESC Journal, 2016, 67(2): 458-468. | |
10 | Sadeghi R, Mohebbi A, Sarrafi A, et al. CFD simulation and optimization of the settler of an industrial copper solvent extraction plant: a case study[J]. Hydrometallurgy, 2011, 106(3): 148-158. |
11 | Emmerich J R, Tang Q, Wang Y, et al. Optical inline analysis and monitoring of particle size and shape distributions for multiple applications: scientific and industrial relevance[J]. Chinese Journal of Chemical Engineering, 2019, 27(2): 257-277. |
12 | Zhou G, Kresta S M. Evolution of drop size distribution in liquid-liquid dispersions for various impellers[J]. Chemical Engineering Science, 1998, 53(11): 2099-2113. |
13 | 邱发成, 刘作华, 刘仁龙, 等. 偏心射流-刚柔组合桨搅拌器内混沌混合行为研究[J]. 化工学报, 2018, 69(2): 618-624. |
Qiu F C, Liu Z H, Liu R L, et al. Chaotic mixing performance in rigid-flexible impeller stirred tank with eccentric air jet[J]. CIESC Journal, 2018, 69(2): 618-624. | |
14 | Nomura T, Uchida T, Takahashi K. Enhancement of mixing by unsteady agitation of an impeller in an agitated vessel [J]. Journal of Chemical Engineering of Japan, 1997, 30(5): 875-879. |
15 | Hirata Y, Dote T, Yoshioka T. Performance of chaotic mixing caused by reciprocating a disk in a cylindrical vessel[J]. Chemical Engineering Research and Design, 2007, 85(A5): 576-582. |
16 | Komoda Y, Inoue Y, Hirata Y. Mixing performance by reciprocating disk in cylindrical vessel[J]. Journal of Chemical Engineering of Japan, 2000, 33(6): 879-885. |
17 | Komoda Y, Inoue Y, Hirata Y. Characteristics of laminar flow induced by reciprocating disk in cylindrical vessel[J]. Journal of Chemical Engineering of Japan, 2001, 34(7): 919-928. |
18 | Komoda Y, Inoue Y, Hirata Y. Characteristics of turbulent flow induced by reciprocating disk in cylindrical vessel[J]. Journal of Chemical Engineering of Japan, 2001, 34 (7): 929-935. |
19 | Lamberto D J, Muzzio F J, Swanson P D. Using time dependent R/MIN to enhance mixing in stirred vessels[J]. Chemical Engineering Science, 1996, 51(5): 733-741. |
20 | Lamberto D J, Alvarez M M, Muzzio F J. Computational analysis of regular and chaotic mixing in a stirred tank reactor[J]. Chemical Engineering Science, 2001, 56: 4887-4899. |
21 | Arratia P E, Kukura J, Lacombe J, et al. Mixing of shear thinning fluids with yield stress in stirred tanks[J]. American Institute of Chemical Engineers Journal, 2006, 52(7): 2310-2322. |
22 | Alvarez M M. Using spatio-temporal asymmetry to enhance mixing in chaotic flows: from maps to stirred tanks[D]. Piscataway: Rutgers University, 2000. |
23 | Alvarez M M, Arratia P E, Muzzio F J. Laminar mixing in eccentric stirred tank systems[J]. Canadian Journal of Chemical Engineering, 2002, 80(4): 546-557. |
24 | Karcz J, Cudak M, Szoplik J. Stirring of a liquid in a stirred tank with an eccentrically located impeller[J]. Chemical Engineering Science, 2005, 60: 2369-2380. |
25 | Bouremel Y, Yianneskis M, Ducci A. Three-dimensional deformation dynamics of trailing vortex structures in a stirred vessel [J]. Industrial & Engineering Chemistry Research, 2009, 48(17): 8148-8158. |
26 | Li Z P, Hu M T, Bao Y Y, et al. Particle image velocimetry experiments and large eddy simulations of merging flow characteristics in dual rushton turbine stirred tanks [J]. Industrial & Engineering Chemistry Research, 2012, 51(5): 2438-2450. |
27 | 刘作华, 唐巧, 王运东, 等. 刚柔组合搅拌桨增强混合澄清槽内流体宏观不稳定性[J]. 化工学报, 2014, 65(1): 78-86. |
Liu Z H, Tang Q, Wang Y D, et al. Enhancement of macro-instability in mixer-settler with rigid-flexible impeller [J]. CIESC Journal, 2014, 65(1): 78-86. | |
28 | 刘作华, 孙瑞祥, 王运东, 等. 刚-柔组合搅拌桨强化流体混沌混合[J]. 化工学报, 2014, 65(9): 3340-3349. |
Liu Z H, Sun R X, Wang Y D, et al. Chaotic mixing intensified by rigid-flexible coupling impeller[J]. CIESC Journal, 2014, 65(9): 3340-3349. | |
29 | Liu Z H, Zheng X P, Liu D, et al. Enhancement of liquid-liquid mixing in a mixer-settler by a double rigid-flexible combination impeller [J]. Chemical Engineering and Processing: Process Intensification, 2014, 86: 69-77. |
30 | 刘作华, 陈超, 刘仁龙, 等. 刚柔组合搅拌桨强化搅拌槽中流体混沌混合[J]. 化工学报, 2014, 65(1): 61-70. |
Liu Z H, Chen C, Liu R L, et al. Chaotic mixing enhanced by rigid-flexible impeller in stirred vessel [J]. CIESC Journal, 2014, 65(1): 61-70. | |
31 | 刘作华, 曾启琴, 杨鲜艳, 等. 刚柔组合搅拌桨与刚性桨调控流场结构的对比[J]. 化工学报, 2014, 65(6): 2078-2084. |
Liu Z H, Zeng Q Q, Yang X Y, et al. Flow field structure with rigid-flexible impeller and rigid impeller[J]. CIESC Journal, 2014, 65(6): 2078-2084. | |
32 | 刘作华, 杨鲜艳, 谢昭明, 等. 柔性桨与自浮颗粒协同强化高黏度流体混沌混合[J]. 化工学报, 2013, 64(8): 2794-2800. |
Liu Z H, Yang X Y, Xie Z M, et al. Chaotic mixing performance of high-viscosity fluid synergistically intensified by flexible impeller and floating particles[J]. CIESC Journal, 2013, 64(8): 2794-2800. | |
33 | 刘作华, 许传林, 何木川, 等. 穿流式刚柔组合搅拌桨强化混合澄清槽内油水两相混沌混合[J]. 化工学报, 2017, 68(2): 637-642. |
Liu Z H, Xu C L, He M C, et al. Oil-water biphase chaotic mixing enhanced by punched rigid-flexible combination impeller in mixer-settler[J]. CIESC Journal, 2017, 68(2): 637-642. | |
34 | 吴雨馨, 唐巧, 张姬一哲, 等. 混合澄清槽混合与澄清特性的规律研究[J]. 化工学报, 2019, 70(10): 3932-3940. |
Wu Y X, Tang Q, Zhang J Y Z, et al. Study on mixing and settling characteristics in mixer-settler[J]. CIESC Journal, 2019, 70(10): 3932-3940. | |
35 | Tang Q, Zhang J, Wu Y, et al. An experimental study of immiscible liquid-liquid dispersions in a pump-mixer of mixer-settler[J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 33-45. |
36 | Tang Q, Ye S, Wang Y, et al. A study on liquid-liquid dispersions in a continuous mixer via computational fluid dynamics (CFD) simulation combined with population balance model (PBM)[J]. The Canadian Journal of Chemical Engineering, 2019, 97(2): 452-464. |
37 | 刘作华, 王闯, 陶长元, 等. 一种新型弹性搅拌桨搅拌反应器: 108452758 A[P]. 2018. |
Liu Z H, Wang C, Tao C Y, et al. A new type of stirred reactor with elastic impeller: 108452758 A[P]. 2018. | |
38 | 刘仁龙, 李爽, 刘作华, 等. 穿流-柔性组合桨强化搅拌槽中流体混沌混合特性[J]. 化工学报, 2015, 66(12): 4736-4742. |
Liu R L, Li S, Liu Z H, et al. Chaotic mixing enhanced by punched-flexible impeller in stirred vessel [J]. CIESC Journal, 2015, 66(12): 4736-4742. | |
39 | Li L, Wei J. Three-dimensional image analysis of mixing in stirred vessels [J]. American Institute of Chemical Engineers Journal, 1999, 45(9): 1855-1865. |
40 | Packard N H, Crutchfield J P, Farmer J D, et al. Geometry from a time series [J]. Physical Review Letters, 1980, 45(9): 712-716. |
41 | Eastwood C D, Armi L, Lasheras J C. The breakup of immiscible fluids in turbulent flows[J]. Journal of Fluid Mechanics, 2004, 502: 309-333. |
42 | Daglas D, Stamatoudis M. Effect of impeller vertical position on drop sizes in agitated dispersions[J]. Chemical Engineering & Technology: Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology, 2000, 23(5): 437-440. |
43 | Sechremeli D, Stampouli A, Stamatoudis M. Comparison of mean drop sizes and drop size distributions in agitated liquid-liquid dispersions produced by disk and open type impellers[J]. Chemical Engineering Journal, 2006, 117(2): 117-122. |
[1] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[2] | 谈莹莹, 刘晓庆, 王林, 黄鲤生, 李修真, 王占伟. R1150/R600a自复叠制冷循环开机动态特性实验研究[J]. 化工学报, 2023, 74(S1): 213-222. |
[3] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[4] | 汪尔奇, 彭书舟, 杨震, 段远源. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
[5] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[6] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[7] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[8] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[9] | 党玉荣, 莫春兰, 史科锐, 方颖聪, 张子杨, 李作顺. 综合评价模型联合遗传算法的混合工质ORC系统性能研究[J]. 化工学报, 2023, 74(5): 1884-1895. |
[10] | 唐茹意, 潘罕骞, 郑侠俊, 张广欣, 汪星平, 崔希利, 邢华斌. Z型全氟聚醚的结构表征[J]. 化工学报, 2023, 74(1): 479-486. |
[11] | 裴仁花, 王永洪, 张新儒, 李晋平. 碳纳米管/环糊精金属有机骨架协同强化混合基质膜的CO2分离[J]. 化工学报, 2022, 73(9): 3904-3914. |
[12] | 杨克, 王辰升, 纪虹, 郑凯, 邢志祥, 毕海普, 蒋军成. 聚多巴胺包覆混合粉体抑制甲烷爆炸的实验研究[J]. 化工学报, 2022, 73(9): 4245-4254. |
[13] | 席国君, 刘子涵, 雷广平. FeTPPs-CuBTC协同强化低浓度煤层气吸附分离[J]. 化工学报, 2022, 73(9): 3940-3949. |
[14] | 孟辉波, 蒙彤, 禹言芳, 王宗勇, 吴剑华. Ross LPD型静态混合器内湍流传热与混合强化特性[J]. 化工学报, 2022, 73(8): 3541-3552. |
[15] | 侯跃辉, 刘璇, 廉应江, 韩梅, 尧超群, 陈光文. 超声微反应器内三硝基间苯三酚合成工艺研究[J]. 化工学报, 2022, 73(8): 3597-3607. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||