化工学报 ›› 2020, Vol. 71 ›› Issue (3): 974-982.DOI: 10.11949/0438-1157.20190867
收稿日期:
2019-07-31
修回日期:
2019-10-10
出版日期:
2020-03-05
发布日期:
2020-03-05
通讯作者:
龚欣
基金资助:
Dong SUN,Haifeng LU,Jiakun CAO,Yuting WU,Xiaolei GUO,Xin GONG()
Received:
2019-07-31
Revised:
2019-10-10
Online:
2020-03-05
Published:
2020-03-05
Contact:
Xin GONG
摘要:
在实验室搭建的有机玻璃料仓下料平台上,分别以自由流动粉体玻璃微珠和黏附性粉体煤粉和聚氯乙烯为实验介质,针对无改流体(No-In)、封闭改流体(Con-In)和开放改流体(Ucon-In)三种情况所形成的不同流道结构,开展了粉体料仓下料及其流率建模研究,定量分析了改流体对粉体下料流率的促进作用,对比给出了玻璃微珠、煤粉和聚氯乙烯在不同流道结构料仓内的下料特性。研究表明,改流体的引入有利于提高料仓下料流率,Con-In促进流动效果最明显,对于流动性弱的煤粉,下料流率提升幅度达到最大的58%。基于剪切摩擦区的概念,提出流率校正因子F对最小能量理论方程进行了修正,将理想的料仓下料模型拓展至实际下料过程。进一步,对于Con-In,根据流道结构特征结合对粉体的受力分析,修正了模型中的锥角项;对于Ucon-In,基于粉体下料流动竞争机制,提出分阶段下料模式并关联了内层和夹层的下料流率,最终建立了复杂流道结构料仓的下料流率预测模型。该模型综合考虑了粉体物性、下料流型和流道结构的影响,可有效预测自由流动粉体和黏附性粉体流经传统料仓(No-In)和改流体料仓(包括Con-In和Ucon-In)的粉体下料流率,且预测偏差<10%。
中图分类号:
孙栋, 陆海峰, 曹嘉琨, 吴雨婷, 郭晓镭, 龚欣. 复杂流道结构料仓的下料流率预测[J]. 化工学报, 2020, 71(3): 974-982.
Dong SUN, Haifeng LU, Jiakun CAO, Yuting WU, Xiaolei GUO, Xin GONG. Solid flow rate prediction in hoppers with complicated flow channels[J]. CIESC Journal, 2020, 71(3): 974-982.
Material | d32/μm | d43/μm | Span | ρb/(kg·m-3) | AOR/(°) | AIF/(°) |
---|---|---|---|---|---|---|
glass bead-a | 47.22 | 49.43 | 0.56 | 1410 | 28.8 | 19.8 |
glass bead-b | 62.76 | 65.13 | 0.51 | 1404 | 28.3 | 21.2 |
glass bead-c | 75.84 | 120.14 | 0.90 | 1353 | 34.6 | 32.7 |
lignite | 115.63 | 134.12 | 0.88 | 621 | 36.7 | 28.7 |
pvc | 116.36 | 128.61 | 0.73 | 567 | 34.0 | 26.5 |
表1 物性数据
Table 1 Physical properties of experimental materials
Material | d32/μm | d43/μm | Span | ρb/(kg·m-3) | AOR/(°) | AIF/(°) |
---|---|---|---|---|---|---|
glass bead-a | 47.22 | 49.43 | 0.56 | 1410 | 28.8 | 19.8 |
glass bead-b | 62.76 | 65.13 | 0.51 | 1404 | 28.3 | 21.2 |
glass bead-c | 75.84 | 120.14 | 0.90 | 1353 | 34.6 | 32.7 |
lignite | 115.63 | 134.12 | 0.88 | 621 | 36.7 | 28.7 |
pvc | 116.36 | 128.61 | 0.73 | 567 | 34.0 | 26.5 |
Material | No-In /(g·s-1) | Con-In/ (g·s-1) | Ucon-In /(g·s-1) |
---|---|---|---|
glass bead-a | 45.0 | 53.2 | 52.1 |
glass bead-b | 46.7 | 54.2 | 48.4 |
glass bead-c | 38.8 | 48.7 | 43.0 |
lignite | 13.8 | 21.7 | 18.1 |
pvc | 13.7 | 16.7 | 15.1 |
表2 下料流率实验值
Table 2 Experimental value of discharge rate
Material | No-In /(g·s-1) | Con-In/ (g·s-1) | Ucon-In /(g·s-1) |
---|---|---|---|
glass bead-a | 45.0 | 53.2 | 52.1 |
glass bead-b | 46.7 | 54.2 | 48.4 |
glass bead-c | 38.8 | 48.7 | 43.0 |
lignite | 13.8 | 21.7 | 18.1 |
pvc | 13.7 | 16.7 | 15.1 |
Material | Experiments/(g·s-1) | Eq. (1)/(g·s-1) | Eq. (3)/(g·s-1) | |RE| of Eq. (1)/% | |RE| of Eq. (3)/% |
---|---|---|---|---|---|
glass bead-a | 45.0 | 52.9 | 45.3 | 14.9 | 0.7 |
glass bead-b | 46.7 | 52.6 | 44.3 | 11.2 | 5.4 |
glass bead-c | 38.8 | 49.7 | 34.7 | 21.9 | 11.7 |
lignite | 13.8 | 22.9 | 17.3 | 39.7 | 20.6 |
pvc | 13.7 | 20.9 | 16.4 | 34.4 | 16.5 |
表3 No-In下料模式下实验值与预测值的偏差
Table 3 Deviation between experimental value and theoretical value under No-In mode
Material | Experiments/(g·s-1) | Eq. (1)/(g·s-1) | Eq. (3)/(g·s-1) | |RE| of Eq. (1)/% | |RE| of Eq. (3)/% |
---|---|---|---|---|---|
glass bead-a | 45.0 | 52.9 | 45.3 | 14.9 | 0.7 |
glass bead-b | 46.7 | 52.6 | 44.3 | 11.2 | 5.4 |
glass bead-c | 38.8 | 49.7 | 34.7 | 21.9 | 11.7 |
lignite | 13.8 | 22.9 | 17.3 | 39.7 | 20.6 |
pvc | 13.7 | 20.9 | 16.4 | 34.4 | 16.5 |
Material | Experiments/(g·s-1) | Eq. (10)/(g·s-1) | |RE| of Eq. (10) |
---|---|---|---|
glass bead-a | 53.2 | 61 | 12.80% |
glass bead-b | 54.2 | 59.6 | 9.10% |
glass bead-c | 48.7 | 46.7 | 4.20% |
lignite | 21.7 | 23.3 | 6.80% |
pvc | 16.7 | 22 | 24.10% |
表4 Con-In下料模式下实验值与预测值的偏差
Table 4 Deviation between experimental value and theoretical value under Con-In mode
Material | Experiments/(g·s-1) | Eq. (10)/(g·s-1) | |RE| of Eq. (10) |
---|---|---|---|
glass bead-a | 53.2 | 61 | 12.80% |
glass bead-b | 54.2 | 59.6 | 9.10% |
glass bead-c | 48.7 | 46.7 | 4.20% |
lignite | 21.7 | 23.3 | 6.80% |
pvc | 16.7 | 22 | 24.10% |
1 | Lu H,Guo X,Jin Y,et al.Powder discharge from a hopper-standpipe system modelled with CPFD[J].Advanced Powder Technology,2017,28(2):481-490. |
2 | Lu H,Guo X,Gong X,et al.Experimental study on aerated discharge of pulverized coal[J].Chemical Engineering Science,2012,71(13):438-448. |
3 | Liu P,Lamarche C Q,Kellogg K M,et al.Cohesive grains: bridging micro-level measurements to macro-level flow behaviorvia surface roughness[J].AIChE Journal,2016,62(10):3529-3537. |
4 | Lu H,Zhong J,Cao G P,et al.Gravitational discharge of fine dry powders with asperities from a conical hopper[J].AIChE Journal,2018,64(2):427-436. |
5 | Zhao Y,Yang S,Zhang L,et al.DEM study on the discharge characteristics of lognormal particle size distributions from a conical hopper[J].AIChE Journal,2018,64(4):1174-1190. |
6 | Freyssingeas E,Dalbe M J,Géminard J C.Flowers in flour: avalanches in cohesive granular matter[J].Physical Review E,2011,83(5):051307. |
7 | Jaeger H M,Nagel S R,Behringer R P.Granular solids, liquids, and gases[J].Reviews of Modern Physics,1996,68(4):1259-1273. |
8 | 孙其诚,王光谦.静态堆积颗粒中的力链分布[J].物理学报,2008,57(8):4667-4674. |
Sun Q C,Wang G Q.Force distribution in static granular matter in two dimensions[J].Acta Physica Sinica,2008,57(8):4667-4674. | |
9 | Campbell C S.Granular material flows – an overview[J].Powder Technology,2006,162(3):208-229. |
10 | Zheng Q J,Xia B S,Pan R H,et al.Prediction of mass discharge rate in conical hoppers using elastoplastic model[J].Powder Technology,2017,307:63-72. |
11 | Zhu H,Zhou Z,Yang R,et al.Discrete particle simulation of particulate systems: a review of major applications and findings[J].Chemical Engineering Science,2008,63(23):5728-5770. |
12 | Zhao Y,Cocco R A,Yang S,et al.DEM study on the effect of particle-size distribution on jamming in a 3D conical hopper[J].AIChE Journal,2019,65(2):512-519. |
13 | 陆海峰,郭晓镭,陶顺龙,等.不同载气供料对煤粉料仓下料的影响[J].化工学报,2014,65(9):3383-3388. |
Lu H F,Guo X L,Tao S L,et al.Effect of feeding gas on hopper discharge of pulverized coal[J].CIESC Journal,2014,65(9):3383-3388. | |
14 | Jasion G T,Shrimpton J S,Li Z,et al.On the bridging mechanism in vibration controlled dispensing of pharmaceutical powders from a micro hopper[J].Powder Technology,2013,249:24-37. |
15 | Zhang C,Qiu C,Pu C,et al.The mechanism of vibrations-aided gravitational flow with overhanging style in hopper[J].Powder Technology,2018,327:291-302. |
16 | Yang S C,Hsiau S S.The simulation and experimental study of granular materials discharged from a silo with the placement of inserts[J].Powder Technology,2001,120(3):244-255. |
17 | Zhang Q,Hao B,Britton M G.Flow patterns of cohesive feed in a model bin with flow-corrective inserts[J].Canadian Biosystems Engineering,2002,44(2):5.1-5.6. |
18 | Lu H,Guo X,Gong X,et al.Prediction of solid discharge rates of pulverized coal from an aerated hopper[J].Powder Technology,2015,286:645-653. |
19 | Matchett A J.A theoretical model of vibrationally induced flow in conical hopper systems[J].Chemical Engineering Research and Design,2004,82(1):85-98. |
20 | Härtl J.A study of granular solids in silos with and without an insert[D].Edinburgh:The University of Edinburgh,2008. |
21 | Wójcik M,Tejchman J,Enstad G G.Confined granular flow in silos with inserts — full-scale experiments[J].Powder Technology,2012,222:15-36. |
22 | Beverloo W A,Leniger H A,Velde J V D.The flow of granular solids through orifices[J].Chemical Engineering Science,1961,15(3):260-269. |
23 | Tierrie J,Baaj H,Darmedru P.Modeling the relationship between the shape and flowing characteristics of processed sands[J].Construction and Building Materials,2016,104:235-246. |
24 | Khashayar S,Shahab G,Reza Z.A review on gravity flow of free-flowing granular solids in silos - basics and practical aspects[J].Chemical Engineering Science,2018,192:1011-1035. |
25 | Rose H F,Tanaka T.Rate of discharge of granular materials from bins and hoppers[J].The Engineer,1959,208:465-469. |
26 | Carleton A J.The effect of fluid-drag forces on the discharge of free-flowing solids from hoppers[J].Powder Technology,1972,6(2):91-96. |
27 | Brown R L,Richards J C.Profiles of flow of granules through apertures[J].Transactions of the Institute of Chemical Engineers,1960,38:243-256. |
28 | Verghese T M,Nedderman R M.The discharge of fine sands from conical hoppers[J].Chemical Engineering Science,1995,50(50):3143-3153. |
29 | Gentzler M,Tardos G I.Measurement of velocity and density profiles in discharging conical hoppers by NMR imaging[J].Chemical Engineering Science,2009,64(22):4463-4469. |
30 | Liu Y,Guo X L,Lu H F,et al.An investigation of the effect of particle size on the flow behavior of pulverized coal[J].Powder Technology,2015,102:698-713. |
[1] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[2] | 何汉兵, 刘真, 陈勇, 王小锋, 曾婧. 直写成型电极锰氧化物粉末的合成与浆料调控[J]. 化工学报, 2023, 74(5): 2239-2247. |
[3] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[4] | 王燕, 何佳, 杨晶晶, 林晨迪, 纪文涛. 草酸盐和碳酸氢盐抑制聚乙烯粉尘爆炸特性[J]. 化工学报, 2022, 73(9): 4207-4216. |
[5] | 杨克, 王辰升, 纪虹, 郑凯, 邢志祥, 毕海普, 蒋军成. 聚多巴胺包覆混合粉体抑制甲烷爆炸的实验研究[J]. 化工学报, 2022, 73(9): 4245-4254. |
[6] | 葛世轶, 杨遥, 黄正梁, 孙婧元, 王靖岱, 阳永荣. 基于静电分选解析聚乙烯颗粒生长与形貌演变[J]. 化工学报, 2022, 73(4): 1585-1596. |
[7] | 尚慧俊, 黎亨利, 刘家义, 潘锋, 杜占, 孙林兵. Co对WO3-Co3O4预还原的影响及其产物碳化性能[J]. 化工学报, 2022, 73(12): 5592-5604. |
[8] | 向茂乔, 耿玉琦, 朱庆山. 氮化硅粉体制备技术及粉体质量研究进展[J]. 化工学报, 2022, 73(1): 73-84. |
[9] | 纪文涛, 李璐, 李忠, 何佳, 杨晶晶, 王燕. 聚磷酸铵抑制PMMA粉尘爆炸特性研究[J]. 化工学报, 2022, 73(1): 461-469. |
[10] | 陆海峰, 曹嘉琨, 郭晓镭, 刘海峰. 基于颗粒间相互作用的细颗粒粉体料仓下料过程分析[J]. 化工学报, 2021, 72(8): 4047-4054. |
[11] | 侯玉洁, 梁琳, 江子旭, 闫兴清, 于小哲, 吕先舒, 喻健良. 惰性气体对粉尘爆炸泄放特性影响的实验研究[J]. 化工学报, 2021, 72(5): 2887-2895. |
[12] | 周剑, 江倩, 杨怡, 冯厦厦, 仲兆祥, 邢卫红. 烧结助剂对低温制备碳化硅多孔陶瓷性能的影响[J]. 化工学报, 2021, 72(4): 2293-2299. |
[13] | 田逢时, 董欣欣, 疏学明, 赵金龙. 蛭石粉末及离子溶液改性后膨胀率和灭火有效性分析[J]. 化工学报, 2021, 72(3): 1761-1768. |
[14] | 魏娟, 王玉军, 骆广生. 铝源孔容和焙烧升温过程对碳热还原法制备氮化铝粉体的影响[J]. 化工学报, 2021, 72(2): 1156-1168. |
[15] | 谢春杰, 何然, 庹新林, 杨万泰. 对位芳纶气凝胶粉体的制备与性能研究[J]. 化工学报, 2021, 72(12): 6361-6370. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||