化工学报 ›› 2020, Vol. 71 ›› Issue (7): 2933-2944.DOI: 10.11949/0438-1157.20200169
王雅洁1,2(),李蕾1,2,张倩1,2,李倩3,李望良1,2()
收稿日期:
2020-02-24
修回日期:
2020-04-16
出版日期:
2020-07-05
发布日期:
2020-07-05
通讯作者:
李望良
作者简介:
王雅洁(1996—),女,硕士研究生,基金资助:
Yajie WANG1,2(),Lei LI1,2,Qian ZHANG1,2,Qian LI3,Wangliang LI1,2()
Received:
2020-02-24
Revised:
2020-04-16
Online:
2020-07-05
Published:
2020-07-05
Contact:
Wangliang LI
摘要:
随着智能材料和纳米技术的发展,具有刺激响应的新型功能膜材料是膜分离技术发展的主要方向之一。磁响应分离膜是一种由磁性颗粒和聚合物高分子混合制备的,可以对磁场刺激产生响应的分离膜。磁响应分离膜兼具膜分离技术的低能耗、高效率等优点和磁性颗粒的磁性响应和催化性能等。磁性颗粒对磁场的响应不仅会影响膜的结构和分离选择性,还会改变膜材料的润湿性以及提高膜抗污染性能。本文从共混法、涂层法、接枝法和原位生长法对磁响应分离膜的制备方法展开论述,介绍了不同制备方法的优缺点及未来发展方向。从调控膜表面润湿性、调控膜抗污染性、调控膜孔径三部分对磁响应分离膜的磁场响应机理进行了详细阐述。并从过滤、吸附、降解、交换分离四方面对磁响应分离膜的应用领域展开论述。最后对磁响应分离膜的发展进行了总结,并对其发展前景进行了展望。
中图分类号:
王雅洁,李蕾,张倩,李倩,李望良. 磁响应分离膜研究进展[J]. 化工学报, 2020, 71(7): 2933-2944.
Yajie WANG,Lei LI,Qian ZHANG,Qian LI,Wangliang LI. Progress of magnetically responsive membranes[J]. CIESC Journal, 2020, 71(7): 2933-2944.
1 | 涂家祎. 高分子膜材料在膜分离过程中的应用[J]. 科技创新与应用, 2016, 16(121): 2095-2945. |
Tu J Y. Application of polymer membrane material in membrane separation process[J]. Technology Innovation and Application, 2016, 16(121): 2095-2945. | |
2 | Chen X, Cheng L, Li H, et al. Magnetic nanofibers: unique properties, fabrication techniques, and emerging applications [J]. Chemistry Select, 2018, 3(31): 9127-9143. |
3 | Mehrnia M R, Homayoonfal M. Fouling mitigation behavior of magnetic responsive nanocomposite membranes in a magnetic membrane bioreactor [J]. Journal of Membrane Science, 2016, 520: 881-894. |
4 | 陈萍超. 磁性改性聚苯胺的制备及其吸附重金属离子和染料性能[D]. 成都: 成都理工大学, 2018. |
Chen P C. Preparation of magnetically modified polyaniline and its adsorption of heavy metal ions and dyes[D]. Chengdu: Chengdu Univerisity of Technology, 2018. | |
5 | Homayoonfal M, Mehrnia M R, Shariaty-Niassar M, et al. Fabrication of magnetic nanocomposite membrane for separation of organic contaminant from water [J]. Desalination Water Treatment, 2015, 54(13): 3603-3609. |
6 | Ger T R, Huang H T, Huang C Y, et al. Study of polyvinyl alcohol nanofibrous membrane by electrospinning as a magnetic nanoparticle delivery approach [J]. Journal Appllied Physics, 2014, 115(17): 173908. |
7 | Ye X Y, Liu Z M, Wang Z G, et al. Preparation and characterization of magnetic nanofibrous composite membranes with catalytic activity [J]. Materials Letters, 2009, 63(21): 1810-1813. |
8 | Jian P, Yahui H, Yang W, et al. Preparation of polysulfone-Fe3O4 composite ultrafiltration membrane and its behavior in magnetic field [J]. Journal of Membrane Science, 2006, 284(1): 9-16. |
9 | Han P, Yahui H, Yang W, et al. Preparation of polysulfone-Fe3O4 composite ultrafiltration membrane and its behavior in magnetic field [J]. Journal of Membrane Science, 2006, 284(1/2): 9-16. |
10 | Upadhyaya L, Semsarilar M, Nehache S, et al. Nanostructured mixed matrix membranes from supramolecular assembly of block copolymer nanoparticles and iron oxide nanoparticles [J]. Macromolecules, 2016, 49(20): 7908-7916. |
11 | Upadhyaya L, Semsarilar M, Quemener D, et al. Block copolymer based novel magnetic mixed matrix membranes-magnetic modulation of water permeation by irreversible structural changes [J]. Journal of Membrane Science, 2018, 551: 273-282. |
12 | Wu H, Teng C, Tian H F, et al. Fabrication of functional magnetic cellulose nanocomposite membranes for controlled adsorption of protein [J]. Cellulose, 2018, 25(5): 2977-2986. |
13 | Sun H, Zhang Y, Li S, et al. Multifunctional core-shell zwitterionic nanoparticles to build robust, stable antifouling membranes via magnetic-controlled surface segregation [J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35501-35508. |
14 | Abdi G, Alizadeh A, Zinadini S, et al. Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid [J]. Journal of Membrane Science, 2018, 552: 326-335. |
15 | Huang Y, Xiao C F, Huang Q L, et al. Magnetic field induced orderly arrangement of Fe3O4/GO composite particles for preparation of Fe3O4/GO/PVDF membrane [J]. Journal of Membrane Science, 2018, 548: 184-193. |
16 | Feng M, Meng F, Pu Z, et al. Introducing magnetic-responsive CNT/Fe3O4 composites to enhance the mechanical properties of sulfonated poly(arylene ether nitrile) proton-exchange membranes [J]. Journal of Polymer Research, 2015, 22(3): 37. |
17 | Mosaffa E, Ghafuri H, Zand H R E. Improvement on physical properties of polyethersulfone membranes modified by poly(1-vinylpyrrolidone) grafted magnetic Fe3O4@SiO2 nanoparticles [J]. Applied Organometallic Chemistry, 2019, 33(1): e4639. |
18 | Low S C, Ng Q H, Tan L S. Study of magnetic-responsive nanoparticle on the membrane surface as a membrane antifouling surface coating [J]. Journal of Polymer Research, 2019, 26(3): 70. |
19 | Ng Q H, Lim J K, Ahmad A L, et al. Efficacy evaluation of the antifouling magnetite–PES composite membrane through QCM-D and magnetophoretic filtration performances [J]. Separation and Purification Technology, 2014, 132: 138-148. |
20 | Ng Q H, Lim J K, Ahmad A L, et al. Magnetic nanoparticles augmented composite membranes in removal of organic foulant through magnetic actuation [J]. Journal of Membrane Science, 2015, 493: 134-146. |
21 | Azmi N A, Ng Q H, Low S C. Ultrafiltration of aquatic humic substances through magnetically responsive polysulfone membranes [J]. Journal Applied Polymer Science, 2015, 132(21): 41874. |
22 | Yang Q, Himstedt H H, Ulbricht M, et al. Designing magnetic field responsive nanofiltration membranes [J]. Journal of Membrane Science, 2013, 430: 70-78. |
23 | Song G H, Sengupta A, Qian X H, et al. Investigation on suppression of fouling by magnetically responsive nanofiltration membranes [J]. Separation and Purification Technology, 2018, 205: 94-104. |
24 | Mino Y, Ogawa D, Matsuyama H. Functional magnetic particles providing osmotic pressure as reusable draw solutes in forward osmosis membrane process [J]. Advanced Powder Technology, 2016, 27(5): 2136-2144. |
25 | Galland S, Andersson R L, Salajkova M, et al. Cellulose nanofibers decorated with magnetic nanoparticles - synthesis, structure and use in magnetized high toughness membranes for a prototype loudspeaker [J]. Journal Materials Chemistry C, 2013, 1(47): 7963-7972. |
26 | Strečková M, Mudra E, Sebek M, et al. Preparation and investigations of Ni0.2Zn0.8Fe2O4 ferrite nanofiber membranes by needleless electrospinning method [J]. Acta Physica Polonica A, 2017, 131(4): 729-731. |
27 | Xing R S, Wu H, Zhao C H, et al. Fabrication of chitosan membranes with high flux by magnetic alignment of in situ generated Fe3O4 [J]. Chemical Engineering & Technology, 2016, 39(5): 969-978. |
28 | Si Y, Tang X M, Ge J L, et al. In situ synthesis of flexible magnetic gamma-Fe2O3@SiO2 nanofibrous membranes [J]. Nanoscale, 2014, 6(4): 2102-2105. |
29 | Si Y, Yan C C, Hong F F, et al. A general strategy for fabricating flexible magnetic silica nanofibrous membranes with multifunctionality [J]. Chemical Communications, 2015, 51(63): 12521-12524. |
30 | Krasowska M, Rybak A, Dudek G, et al. Structure morphology problems in the air separation by polymer membranes with magnetic particles [J]. Journal of Membrane Science, 2012, 415: 864-870. |
31 | Krasowska M, Strzelewicz A, Rybak A, et al. Structure and transport properties of ethylcellulose membranes with different types and granulation of magnetic powder [J]. Physica A, 2016, 452: 241-250. |
32 | Tayefeh A, Wiesner M, Mousavi S A, et al. Modeling magneto-mechanical behavior of Fe3O4 nanoparticle/polyamide nanocomposite membrane in an external magnetic field [J]. Journal of Composite Materials, 2018, 52(11): 1505-1517. |
33 | Daraei P, Madaeni S S, Ghaemi N, et al. Fouling resistant mixed matrix polyethersulfone membranes blended with magnetic nanoparticles: study of magnetic field induced casting [J]. Separation and Purification Technology, 2013, 109: 111-121. |
34 | Xu Z, Wu T, Shi J, et al. Manipulating migration behavior of magnetic graphene oxide via magnetic field induced casting and phase separation toward high-performance hybrid ultrafiltration membranes [J]. ACS Applied Materials & Interfaces, 2016, 8(28): 18418-18429. |
35 | Huang Z Q, Chen L, Chen K, et al. A novel method for controlling the sub layer microstructure of an ultrafiltration membrane: the preparation of the PSF-Fe3O4 ultrafiltration membrane in a parallel magnetic field [J]. Journal of Applied Polymer Science, 2010, 117(4): 1960-1968. |
36 | Huang Z Q, Zheng F, Zhang Z, et al. The performance of the PVDF-Fe3O4 ultrafiltration membrane and the effect of a parallel magnetic field used during the membrane formation [J]. Desalination, 2012, 292: 64-72. |
37 | Zinadini S, Zinatizadeh A A L, Rahimi M, et al. Magnetic field-augmented coagulation bath during phase inversion for preparation of ZnFe2O4/SiO2/PES nanofiltration membrane: a novel method for flux enhancement and fouling resistance [J]. Journal of Industrial and Engineering Chemistry, 2017, 46: 9-18. |
38 | Rastgar M, Shakeri A, Bozorg A, et al. Highly-efficient forward osmosis membrane tailored by magnetically responsive graphene oxide/Fe3O4 nanohybrid [J]. Applied Surface Science, 2018, 441: 923-935. |
39 | Du M, Cao X Z, Xia R, et al. Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes [J]. Chinese Physics B, 2018, 27(2): 581-581. |
40 | Hu X H, Sun J J, Peng R C, et al. Novel thin-film composite reverse osmosis membrane with superior water flux using parallel magnetic field induced magnetic multi-walled carbon nanotubes [J]. Journal of Cleaner Production, 2020, 242: 118423. |
41 | Himstedt H H, Sengupta A, Qian X H, et al. Magnetically responsive nano filtration membranes for treatment of coal bed methane produced water [J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 94: 97-108. |
42 | Himstedt H H, Yang Q, Dasi L P, et al. Magnetically activated micromixers for separation membranes [J]. Langmuir, 2011, 27(9): 5574-5581. |
43 | Himstedt H H, Yang Q, Qian X H, et al. Toward remote-controlled valve functions via magnetically responsive capillary pore membranes [J]. Journal of Membrane Science, 2012, 423: 257-266. |
44 | Huang Z Q, Chen Z Y, Guo X P, et al. Structures and separation properties of PAN-Fe3O4 ultrafiltration membranes prepared under an orthogonal magnetic field [J]. Industrial and Engineering Chemistry Research, 2006, 45(23): 7905-7912. |
45 | Gajda A M, Ulbricht M. Magnetic Fe3O4 nanoparticle heaters in smart porous membrane valves [J]. Journal of Materials Chemistry B, 2014, 2(10): 1317-1326. |
46 | Qian X H, Yang Q, Vu A, et al. Localized heat generation from magnetically responsive membranes [J]. Industrial and Engineering Chemistry Research, 2016, 55(33): 9015-9027. |
47 | Lin X, Nguyen Q B, Ulbricht M. Magnetoresponsive poly(ether sulfone)-based iron oxide cum hydrogel mixed matrix composite membranes for switchable molecular sieving [J]. ACS Applied Materials & Interfaces, 2016, 8(42): 29001-29014. |
48 | Rybak A, Grzywna Z J, Kaszuwara W. On the air enrichment by polymer magnetic membranes [J]. Journal of Membrane Science, 2009, 336(1/2): 79-85. |
49 | Rybak A, Strzelewicz A, Kaszuwara W, et al. Influence of various parameters on the air separation process by magnetic membranes [J]. Separation Science and Technology, 2012, 47(9): 1395-1404. |
50 | Rybak A, Grzywna Z J, Sysel P. Mixed matrix membranes composed of various polymer matrices and magnetic powder for air separation [J]. Separation and Purification Technology, 2013, 118: 424-431. |
51 | Rybak A, Dudek G, Krasowska M, et al. Magnetic mixed matrix membranes consisting of PPO matrix and magnetic filler in gas separation [J]. Separation Science and Technology, 2014, 49(11): 1729-1735. |
52 | Rybak A, Dudek G, Krasowsk M, et al. Magnetic mixed matrix membranes in air separation [J]. Chemical Paper, 2014, 68(10): 1332-1340. |
53 | Rybak A, Krasowsk W. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers [J]. Journal of Alloys and Compounds, 2015, 648: 205-214. |
54 | Rybak A, Rybak A, Kaszuwara W, et al. The rheological and mechanical properties of magnetic hybrid membranes for gas mixtures separation [J]. Materials Letters, 2016, 183: 170-174. |
55 | Rybak A, Rybak A, Kaszuwara W, et al. The studies on novel magnetic polyimide inorganic-organic hybrid membranes for air separation [J]. Materials Letters, 2017, 208: 14-18. |
56 | Rybak A, Rybak A, Kaszuwara W, et al. Metal substituted sulfonated poly(2, 6-dimethyl-1, 4-phenylene oxide) hybrid membranes with magnetic fillers for gas separation [J]. Separation and Purification Technology, 2019, 210: 479-490. |
57 | Rybak A, Rybak A, Kaszuwara W, et al. The magnetic inorganic-organic hybrid membranes based on polyimide matrices for gas separation [J]. Composites Part B: Engineering, 2017, 110: 161-710. |
58 | Favvas E P, Heliopoulos N S, Karousos D S, et al. Mixed matrix polymeric and carbon hollow fiber membranes with magnetic iron-based nanoparticles and their application in gas mixture separation [J]. Materials Chemistry and Physics, 2019, 223: 220-229. |
59 | Harami H R, Asghari M, Mohammadi A H. Magnetic nano Fe2O3 incorporated PEBA membranes for CO2/CH4 and CO2/N2 separation: experimental study and grand canonical Monte Carlo and molecular dynamics simulations [J]. Greenhouse Gases: Science and Technology, 2019, 9(2): 306-330. |
60 | Madaeni S S, Enayati E, Vatanpour V. Separation of nitrogen and oxygen gases by polymeric membrane embedded with magnetic nano-particle [J]. Polymers for Advanced Technologies, 2011, 22(12): 2556-2563. |
61 | Dudek G, Tueczyn R, Strzelewicz A, et al. Studies of separation of vapours and gases through composite membranes with ferroferric oxide magnetic nanoparticles [J]. Separation and Purification Technology, 2013, 109: 55-63. |
62 | Dudek G, Strzelewicz A, Tueczyn R, et al. The study of ethanol/water vapors permeation through sulfuric acid cross-linked chitosan magnetic membranes [J]. Separation Science and Technology, 2014, 49(11): 1761-1767. |
63 | Dudek G, Gnus M, Tueczyn R, et al. The study of ethanol and water vapour permeation process through alginate membranes modified by magnetic powders [J]. Desalination and Water Treatment, 2017, 64: 339-344. |
64 | Wang R, Chen Y, Xie H, et al. Polysaccharide separation mechanism in polysulfone-Fe3O4 magnetic composite membranes [J]. Chinese Science Bulletin, 2011, 56(18): 1951-1956. |
65 | Hong F F, Yan C C, Si Y, et al. Nickel ferrite nanoparticles anchored onto silica nanofibers for designing magnetic and flexible nanofibrous membranes [J]. ACS Applied Materials & Interfaces, 2015, 7(36): 20200-20207. |
66 | Khan A, Begum S, Alin N, et al. Preparation of crosslinked chitosan magnetic membrane for cations sorption from aqueous solution [J]. Water Science and Technology, 2017, 75(9): 2034-2046. |
67 | Kang J, Zhang H Y, Duan X G, et al. Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants [J]. Chemical Engineering Journal, 2019, 362: 251-261. |
68 | Gebreyohannes A Y, Dharmjeet M, Swusten T, et al. Simultaneous glucose production from cellulose and fouling reduction using a magnetic responsive membrane reactor with superparamagnetic nanoparticles carrying cellulolytic enzymes [J]. Bioresource Technology, 2018, 263: 532-540. |
69 | Hosseini S M, Sohrabnejad S, Nabiyouni G, et al. Magnetic cation exchange membrane incorporated with cobalt ferrite nanoparticles for chromium ions removal via electrodialysis [J]. Journal of Membrane Science, 2019, 583: 292-300. |
70 | Hasanabadi N, Ghaffarian S R, Hasani-Sadrabadi M M. Magnetic field aligned nanocomposite proton exchange membranes based on sulfonated poly (ether sulfone) and Fe2O3 nanoparticles for direct methanol fuel cell application [J]. International Journal of Hydrogen Energy, 2011, 36(23): 15323-15332. |
71 | Feng M N, Meng F B, Pu Z J, et al. Introducing magnetic-responsive CNT/Fe3O4 composites to enhance the mechanical properties of sulfonated poly(arylene ether nitrile) proton-exchange membranes [J]. Journal of Polymer Research, 2015, 22(3): 37. |
72 | Chen N J, Wang D, Long C, et al. Magnetic field-oriented ferroferric oxide/poly(2, 6-dimethyl-1, 4-phenylene oxide) hybrid membranes for anion exchange membrane applications [J]. Nanoscale, 2018, 10(39): 18680-18689. |
[1] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[2] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[3] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[4] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[5] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[6] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[7] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[8] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[9] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[10] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[11] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[12] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[13] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[14] | 张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033. |
[15] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 544
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 679
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||