化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3266-3277.DOI: 10.11949/0438-1157.20191076
收稿日期:
2019-10-07
修回日期:
2020-04-07
出版日期:
2020-07-05
发布日期:
2020-07-05
通讯作者:
赵红霞
作者简介:
陈威(1994—),男,硕士,基金资助:
Wei CHEN(),Meihong YU,Hongxia ZHAO()
Received:
2019-10-07
Revised:
2020-04-07
Online:
2020-07-05
Published:
2020-07-05
Contact:
Hongxia ZHAO
摘要:
为了使R744双温超市制冷系统在任何环境温度下都能以最高效率运行,在R744平行压缩制冷系统中增加了一个多喷射器组回路(包括气气喷射器和气液喷射器),以确保系统在高温环境下仍能以较高的效率运行。并在环境温度变化的情况下,通过自动控制阀切换多喷射增压制冷模式和平行压缩制冷模式,为此建立了系统的热力学模型。计算结果表明,当环境温度低于17.32℃时,采用平行压缩制冷模式;当环境温度高于17.32℃时,采用多喷射增压制冷模式。当环境温度从21.1℃变化到36℃时,多喷射器制冷系统的COP比平行压缩制冷系统高15.91%~32.61%。
中图分类号:
陈威, 于梅红, 赵红霞. 优化控制R744多喷射器双温超市制冷系统[J]. 化工学报, 2020, 71(7): 3266-3277.
Wei CHEN, Meihong YU, Hongxia ZHAO. Control optimization of R744 duo-temperature supermarket refrigeration system with multi-ejector[J]. CIESC Journal, 2020, 71(7): 3266-3277.
系统 | 关联式 | 应用范围 |
---|---|---|
PCR系统 | ||
MEBR系统 | ||
二氧化碳循环中温零售食品制冷系统的优化控制[ | ||
for subcritical | ||
for transcritical | ||
常规增压制冷系统[ | ||
二氧化碳的解决方案[ | ||
R744增压系统[ | ||
for standard transcritical booster system | ||
for transcritical booster system with bypass compressor | ||
for transcritical booster system with upstream expansion valve |
表1 一些气体冷却器/冷凝器重要的总结
Table 1 Summary of some important correlations of Gas coolers/condensers
系统 | 关联式 | 应用范围 |
---|---|---|
PCR系统 | ||
MEBR系统 | ||
二氧化碳循环中温零售食品制冷系统的优化控制[ | ||
for subcritical | ||
for transcritical | ||
常规增压制冷系统[ | ||
二氧化碳的解决方案[ | ||
R744增压系统[ | ||
for standard transcritical booster system | ||
for transcritical booster system with bypass compressor | ||
for transcritical booster system with upstream expansion valve |
33 | Lucas C, Koehler J. Experimental investigation of the COP improvement of a refrigeration cycle by use of an ejector[J]. International Journal of Refrigeration, 2012, 35(6): 1595-1603. |
34 | Gullo P, Elmegaard B, Cortella G. Energy and environmental performance assessment of R744 booster supermarket refrigeration systems operating in warm climates[J]. International Journal of Refrigeration, 2016, 64: 61-79. |
1 | Molina M J, Rowland F S. Stratospheric sink for chlorofluoromethanes: chlorine atomc-atalysed destruction of ozone[J]. Nature, 1974, 249(5460): 810-812. |
2 | Purohit N, Gullo P, Dasgupta M S. Comparative assessment of low-GWP based refrigerating plants operating in hot climates[J]. Energy Procedia, 2017, 109: 138-145. |
3 | Harby K. Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: an updated overview[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 1247-1264. |
4 | Mota-Babiloni A, Navarro-Esbrí J, Á Barragán-Cervera, et al. Commercial refrigeration—an overview of current status[J]. International Journal of Refrigeration, 2015, 57: 186-196. |
5 | Makhnatch P, Mota-Babiloni A, Rogstam J, et al. Retrofit of lower GWP alternative R449A into an existing R404A indirect supermarket refrigeration system[J]. International Journal of Refrigeration, 2017, 76: 184-192. |
6 | Sun Z, Wang Q, Dai B, et al. Options of low global warming potential refrigerant group for a three-stage cascade refrigeration system[J]. International Journal of Refrigeration, 2019, 100: 471-483. |
7 | Ge Y T, Tassou S A. Control optimisation of CO2 cycles for medium temperature retail food refrigeration systems[J]. International Journal of Refrigeration, 2009, 32(6): 1376-1388. |
8 | Tsamos K M, Ge Y T, Santosa I, et al. Energy analysis of alternative CO2 refrigeration system configurations for retail food applications in moderate and warm climates[J]. Energy Conversion and Management, 2017, 150: 822-829. |
9 | Llopis R, Sanchez D, Sanz-Kock C, et al. Energy and environmental comparison of two-stage solutions for commercial refrigeration at low temperature: fluids and systems[J]. Applied Energy, 2015, 138: 133-142. |
10 | Sharma V, Fricke B, Bansal P. Comparative analysis of various CO2 configurations in supermarket refrigeration systems[J]. International Journal of Refrigeration, 2014, 46: 86-99. |
11 | Gupta D K, Dasgupta M S. Simulation and performance optimization of finned tube gas cooler for trans-critical CO2 refrigeration system in Indian context[J]. International Journal of Refrigeration, 2014, 38: 153-167. |
12 | Chesi A, Esposito F, Ferrara G, et al. Experimental analysis of R744 parallel compression cycle[J]. Applied Energy, 2014, 135: 274-285. |
13 | Yu B, Yang J, Wang D, et al. An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle[J]. Energy, 2019, 189: 116147. |
14 | Nakagawa M, Marasigan A R, Matsukawa T, et al. Experimental investigation on the effect of mixing length on the performance of two-phase ejector for CO2 refrigeration cycle with and without heat exchanger[J]. International Journal of Refrigeration, 2011, 34(7): 1604-1613. |
15 | Gullo P, Hafner A, Cortella G. Multi-ejector R744 booster refrigerating plant and air conditioning system integration—a theoretical evaluation of energy benefits for supermarket applications[J]. International Journal of Refrigeration, 2017, 75: 164-176. |
16 | Zhang Z, Feng X, Tian D, et al. Progress in ejector-expansion vapor compression refrigeration and heat pump systems[J]. Energy Conversion and Management, 2020, 207: 112529. |
17 | Ghaebi H, Rostamzadeh H. Design and optimization of a novel dual-loop bi-evaporator ejection/compression refrigeration cycle[J]. Applied Thermal Engineering, 2019, 151: 240-261. |
18 | Gullo P, Hafner A, Banasiak K. Transcritical R744 refrigeration systems for supermarket applications: current status and future perspectives[J]. International Journal of Refrigeration, 2018, 93: 269-310. |
19 | Elbel S, Hrnjak P. Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation[J]. International Journal of Refrigeration, 2008, 31(3): 411-422. |
20 | Haida M, Banasiak K, Smolka J, et al. Experimental analysis of the R744 vapour compression rack equipped with the multi-ejector expansion work recovery module[J]. International Journal of Refrigeration, 2016, 64: 93-107. |
21 | Hafner A, Försterling S, Banasiak K. Multi-ejector concept for R-744 supermarket refrigeration[J]. International Journal of Refrigeration, 2014, 43: 1-13. |
22 | Geng L, Liu H, Wei X, et al. Energy and exergy analyses of a bi-evaporator compression/ejection refrigeration cycle[J]. Energy Conversion and Management, 2016, 130: 71-80. |
23 | Lawrence N, Elbel S. Experimental investigation on control methods and strategies for off-design operation of the transcritical R744 two-phase ejector cycle[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2019, 106: 570-582. |
24 | Ge Y T, Tassou S A. Thermodynamic analysis of transcritical CO2 booster refrigeration systems in supermarket[J]. Energy Conversion and Management, 2011, 52(4): 1868-1875. |
25 | 王振超, 陈江平, 陈洪祥, 等. CO2在大、中型超市制冷系统中的应用[J]. 制冷技术, 2009, (1): 33-39. |
Wang Z C, Chen J P, Chen H X, et al. Application of CO2 in refrigeration systems of large/medium size supermarkets[J]. Refrigeration technology, 2009, (1): 33-39. | |
26 | 魏晋, 李涛, 唐黎明, 等. 四种跨临界CO2压缩式热泵系统的热力性能研究[J]. 制冷与空调(北京), 2014, 14: 94-103. |
Wei J, li T, Tang L M, et al. Study on thermodynamic performance of four different types of transcritical CO2 compression heat pump systems[J]. Refrigeration and Air conditioning (Beijing), 2014, 14: 94-103. | |
27 | Zhao H, Zhang K, Wang L, et al. Thermodynamic investigation of a booster-assisted ejector refrigeration system[J]. Applied Thermal Engineering, 2016, 104: 274-281. |
28 | Haida M, Smolka J, Palacz M, et al. Numerical investigation of an R744 liquid ejector for supermarket refrigeration systems[J]. Thermal Science, 2016, 20(4): 1259-1269. |
29 | Minetto S, Brignoli R, Zilio C, et al. Experimental analysis of a new method for overfeeding multiple evaporators in refrigeration systems[J]. International Journal of Refrigeration, 2014, 38: 1-9. |
30 | Ge Y, Cropper R. Air-cooled condensers in retail systems using R22 and R404A refrigerants[J]. Applied Energy, 2004, 78(1): 95-110. |
31 | Girotto S, Minetto S, Neksa P. Commercial refrigeration system using CO2 as the refrigerant[J]. International Journal of Refrigeration, 2004, 27(7): 717-723. |
32 | Llopis R, Nebot-Andrés L, Cabello R, et al. Experimental evaluation of a CO2 transcritical refrigeration plant with dedicated mechanical subcooling[J]. International Journal of Refrigeration, 2016, 69: 361-368. |
[1] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[2] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[3] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[4] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[5] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[6] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[7] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[8] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[9] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[10] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[11] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[12] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[13] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[14] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[15] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||