化工学报 ›› 2020, Vol. 71 ›› Issue (8): 3819-3829.DOI: 10.11949/0438-1157.20200199
郝丽1,2(),黄丹丹1,关梅1,周红军1,2,周新华1,2()
收稿日期:
2020-02-28
修回日期:
2020-06-01
出版日期:
2020-08-05
发布日期:
2020-08-05
通讯作者:
周新华
作者简介:
郝丽(1988—),女,博士,讲师,基金资助:
Li HAO1,2(),Dandan HUANG1,Mei GUAN1,Hongjun ZHOU1,2,Xinhua ZHOU1,2()
Received:
2020-02-28
Revised:
2020-06-01
Online:
2020-08-05
Published:
2020-08-05
Contact:
Xinhua ZHOU
摘要:
为了提高疏水性农药的水分散性,利用氨基-酰胺类两亲分子和多元羧酸通过氢键作用自组装形成一种智能超两亲分子水凝胶,在较低浓度[5.8%(质量)]下即可形成稳定的缠绕交联三维网状结构。通过DSC、FTIR、1H NMR、SEM、DLS、黏度测试等表征手段对比了氨基-酰胺与两种多元羧酸形成的超分子的性能和结构,发现两种超分子凝胶具有不同的刺激响应相行为及表观形貌,如氨基-酰胺/柠檬酸超分子具有热响应溶胶-凝胶可逆转换相行为,凝胶态可在70~80℃获得,临界凝胶化温度为76℃,冻干凝胶呈球状缠绕结构;氨基-酰胺/马来酸超分子具有pH诱导溶胶-凝胶可逆转换行为,pH在7~8之间可形成水凝胶态,冻干凝胶呈柱状囊泡结构。氨基-酰胺/柠檬酸超分子对农药的包封率略高于氨基-酰胺/马来酸,三元羧酸与氨基-酰胺形成的超分子与二元羧酸相比,从结构和电荷的角度,更有利于实现农药的智能缓释效果。
中图分类号:
郝丽, 黄丹丹, 关梅, 周红军, 周新华. 氨基-酰胺类智能超分子水凝胶农药载体制备[J]. 化工学报, 2020, 71(8): 3819-3829.
Li HAO, Dandan HUANG, Mei GUAN, Hongjun ZHOU, Xinhua ZHOU. Preparation of supramolecular-assemble hydrogels as pesticide carriers based on amphiphilic amino-amide compounds[J]. CIESC Journal, 2020, 71(8): 3819-3829.
图1 合成路线:硬脂酸与DMPDA缩合反应生成氨基-酰胺(a);氨基-酰胺与柠檬酸组装形成温度响应超分子(b);氨基-酰胺与马来酸组成形成pH响应超分子(c)
Fig.1 Synthesis routes: stearic acid and DMPDA condensation to form amino-amide(a); amino-amide and citric acid assemble to form temperature-responsive supramolecule(b); amino-amide and maleic acid to form pH-responsive supramolecule(c)
图2 氨基-酰胺/柠檬酸温度响应超分子水凝胶溶胶-凝胶转变(a);氨基-酰胺/马来酸pH响应超分子水凝胶溶胶-凝胶转变(b)
Fig.2 Amino-amide/citric acid temperature-responsive supramolecular hydrogel sol-gel transition (a); amino-amide/maleic acid pH-responsive supramolecular hydrogel sol-gel transition(b)
图3 氨基-酰胺/柠檬酸(a)和氨基-酰胺/马来酸(b)超分子水凝胶黏度随温度变化曲线
Fig.3 Viscosity of amino-amide/citric acid(a) and amino-amide/maleic acid(b) supramolecular hydrogels vs. temperature
图5 氨基-酰胺及其与柠檬酸和马来酸的超分子冻干凝胶的红外光谱图a—amino-amide; b—amino-amide/citric acid; c—amino-amide/maleic acid
Fig.5 FTIR spectra of amino-amide and its supramolecular lyophilized gels with citric acid and maleic acid
图6 氨基-酰胺/柠檬酸超分子(a)及氨基-酰胺/马来酸超分子(b)的1H NMR谱图
Fig.6 1H NMR spectra of amino-amide/citric acid supramolecular (a) and amino-amide/maleic acid supramolecular (b)
图7 氨基-酰胺与柠檬酸(a)和马来酸(b)的超分子冻干凝胶的SEM图像;氨基-酰胺/柠檬酸和氨基-酰胺/马来酸溶胶胶束的粒径分布(c);氨基-酰胺/柠檬酸和氨基-酰胺/马来酸装载农药阿维菌素后胶束的粒径分布(d)
Fig.7 SEM images of amino-amide/citric acid supramolecular lyophilized gel (a), amino-amide/maleic acid supramolecular lyophilized gel (b); particle size distribution of amino-amide/citric acid and amino-amide/maleic acid sol micelles (c); micelle size distribution of amino-amide/citric acid and amino-amide/maleic acid loaded with avermectin (d)
图8 氨基-酰胺与柠檬酸(a)和马来酸(b)超分子装载阿维菌素后的冻干凝胶的SEM图像
Fig.8 SEM images of amino-amide/citric acid supramolecular lyophilized gel (a) and amino-amide/maleic acid supramolecular lyophilized gel (b) after avermectin loading
Sample | Encapsulation efficiency (EE)/% | EE after placing three days/% |
---|---|---|
AVM@amino-amide/citric acid | 89.12±4.72 | 88.27±5.11 |
AVM@amino-amide/maleic acid | 82.39±2.52 | 64.80±4.23 |
表1 氨基-酰胺/柠檬酸和氨基-酰胺/马来酸超分子对农药阿维菌素的包封率及稳定性
Table 1 Encapsulation efficiency and stability of avermectin by amino-amide/citric acid and amino-amide/maleic acid supramolecules
Sample | Encapsulation efficiency (EE)/% | EE after placing three days/% |
---|---|---|
AVM@amino-amide/citric acid | 89.12±4.72 | 88.27±5.11 |
AVM@amino-amide/maleic acid | 82.39±2.52 | 64.80±4.23 |
图9 阿维菌素@氨基-酰胺/柠檬酸载药超分子(a)和阿维菌素@氨基-酰胺/马来酸载药超分子(b)在不同温度、pH环境下的缓释曲线
Fig.9 Sustained-release curves of avermectin loaded amino-amide/citric acid supramoleculars (a) and avermectin loaded amino-amide/maleic acid supramolecular (b) under different temperatures and pH environments
1 | Zuo Y, Jiao Z, Ma L, et al. Hydrogen bonding induced UCST phase transition of poly(ionic liquid)-based nanogels[J]. Polymer, 2016, 98: 287-293. |
2 | Shankar B V, Patnaik A. A new pH and thermo-responsive chiral hydrogel for stimulated release[J]. Journal of Physical Chemistry B, 2007, 111(31): 9294-9300. |
3 | Cunningham V J, Ratcliffe L P D, Blanazs A, et al. Tuning the critical gelation temperature of thermo-responsive diblock copolymer worm gels[J]. Polymer Chemistry, 2014, 5(21): 6307-6317. |
4 | Xiao Y Y, Gong X L, Kang Y, et al. Light-, pH- and thermal-responsive hydrogels with the triple-shape memory effect[J]. Chemical Communications, 2016, 52(70): 10609-10612. |
5 | Kang Y, Ju X, Ding L S, et al. Reactive oxygen species and glutathione dual redox-responsive supramolecular assemblies with controllable release capability[J]. ACS Applied Matererials & Interfaces, 2017, 9(5): 4475-4484. |
6 | Cheng X, Jin Y, Sun T, et al. An injectable, dual pH and oxidation-responsive supramolecular hydrogel for controlled dual drug delivery[J]. Colloids and Surfaces B: Biointerfaces, 2016, 141: 44-52. |
7 | Roy D, Cambre J N, Sumerlin B S. Future perspectives and recent advances in stimuli-responsive materials[J]. Progress in Polymer Science, 2010, 35(1/2): 278-301. |
8 | Stuart M A, Huck W T, Genzer J, et al. Emerging applications of stimuli-responsive polymer materials[J]. Nature Materials, 2010, 9(2): 101-113. |
9 | Song F, Zhang L M, Shi J F, et al. Using hydrophilic polysaccharide to modify supramolecular hydrogel from a low-molecular-mass gelator[J]. Materials Science and Engineering: C, 2010, 30(6): 804-811. |
10 | Shen Y T, Li C H, Chang K C, et al. Synthesis, optical, and mesomorphic properties of self-assembled organogels featuring phenylethynyl framework with elaborated long-chain pyridine-2,6-dicarboxamides[J]. Langmuir, 2009, 25(15): 8714-8722. |
11 | Steed J W. Anion-tuned supramolecular gels: a natural evolution from urea supramolecular chemistry[J]. Chemical Society Reviews, 2010, 39(10): 3686-3699. |
12 | Tomasini C, Castellucci N. Peptides and peptidomimetics that behave as low molecular weight gelators[J]. Chemical Society Reviews, 2013, 42(1): 156-172. |
13 | Fichman G, Gazit E. Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications[J]. Acta Biomaterialia, 2014, 10(4): 1671-1682. |
14 | Tang G, Chen S, Ye F, et al. Loofah-like gel network formed by the self-assembly of a 3D radially symmetrical organic-inorganic hybrid gelator[J]. Chemical Communications, 2014, 50(54): 7180-7183. |
15 | Cordier P, Tournilhac F, Soulie-Ziakovic C, et al. Self-healing and thermoreversible rubber from supramolecular assembly[J]. Nature, 2008, 451(7181): 977-980. |
16 | Aida T, Meijer E W, Stupp S I. Functional supramolecular polymers[J]. Science, 2012, 335(6070): 813-817. |
17 | Yan X, Wang F, Zheng B, et al. Stimuli-responsive supramolecular polymeric materials[J]. Chemical Society Reviews, 2012, 41(18): 6042-6065. |
18 | Yan X, Xu D, Chen J, et al. A self-healing supramolecular polymer gel with stimuli-responsiveness constructed by crown ether based molecular recognition[J]. Polymer Chemistry, 2013, 4(11): 3312-3322. |
19 | 沈之川, 梁志铿, 周红军, 等. pH响应性阿维菌素/介孔硅的一步合成与释药性能[J]. 精细化工, 2018, 35(7): 1126-1130. |
Shen Z C, Liang Z K, Zhou H J, et al. One-step synthesis and drug release of pH-responsive avermectin/mesoporous silica[J]. Fine Chemicals, 2018, 35(7): 1126-1130. | |
20 | 陈铧耀, 周新华, 周红军, 等. 毒死蜱/壳聚糖改性凹凸棒土/海藻酸钠微球的制备与缓释性能[J]. 化工进展, 2017, 36(3): 1033-1040. |
Chen H Y, Zhou X H, Zhou H J, et al. Preparation and slow-release performance of chlorpyrifos/chitosan modified attapulgite/sodium alginate microspheres[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 1033-1040. | |
21 | 陈龙, 周红军, 江海科, 等. 叶面亲和型阿维菌素微胶囊的制备及 pH 响应性释放性能[J]. 化工进展, 2020, 39(1): 348-355. |
Chen L, Zhou H J, Jiang H K, et al. Preparation and pH responsive release properties of foliar affinity avermectin microcapsules[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 348-355. | |
22 | 邱松发, 许斌华, 林冠权, 等. 2, 4-D/CMC接枝物纳米粒子的制备与缓释性能研究[J]. 化工学报, 2019, 70(5): 2007-2015. |
Qiu S F, Xu B H, Lin G Q, et al. Preparation and sustained release performance of 2,4-D/grafted CMC nanoparticles [J]. CIESC Journal, 2019, 70(5): 2007-2015. | |
23 | Wang S, Vajjala K S, Gomez E D, et al. Sustainable thermoplastic elastomers derived from fatty acids[J]. Macromolecules, 2013, 46(18): 7202-7212. |
24 | Holmberg A L, Reno K H, Wool R P, et al. Biobased building blocks for the rational design of renewable block polymers[J]. Soft Matter, 2014, 10(38): 7405-7424. |
25 | Vendamme R, Schüwer N, Evers W. Recent synthetic approaches and emerging bio-inspired strategies for the development of sustainable pressure-sensitive adhensives derived from renewable building blocks[J]. Journal of Applied Polymer Science, 2014, 131(17): 40669. |
26 | Chen I C, Yegin C, Zhang M, et al. Use of pH-responsive amphiphilic systems as displacement fluids in enhanced oil recovery[J]. SPE Journal, 2014, 19(6): 1035-1046. |
27 | Hao L, Yegin C, Talari J V, et al. Thermo-responsive gels based on supramolecular assembly of an amidoamine and citric acid[J]. Soft Matter, 2018, 14: 432. |
28 | Dougherty R C. Temperature and pressure dependence of hydrogen bond strength: a perturbation molecular orbital approach[J]. The Journal of Chemical Physics, 1998, 109(17): 7372-7378. |
29 | Dougherty R C, Howard L N. Equilibrium structural model of liquid water: evidence from heat capacity, spectra, density, and other properties[J]. The Journal of Chemical Physics, 1998, 109(17): 7379-7393. |
30 | 宋伟杰, 路福绥. 阿维菌素光化学降解研究及其光稳定剂的筛选[J]. 现代农药, 2017, 16(2): 21-23. |
Song W J, Lu F S. Photodegradation of abamectin and screening the photostabilizers[J]. Modern Agrochemicals, 2017, 16(2): 21-23. |
[1] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[2] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[3] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[4] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[5] | 徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583. |
[6] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[7] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[8] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[9] | 谢诗婷, 刘壮, 谢锐, 巨晓洁, 汪伟, 潘大伟, 褚良银. 聚(N-异丙基丙烯酰胺-共聚-烯丙基硫脲)智能微凝胶的制备及其Hg2+响应性能的研究[J]. 化工学报, 2023, 74(6): 2689-2698. |
[10] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[11] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[12] | 范坤阳, 杨景兴, 许海波, 连兴容, 何凤梅, 陈聪慧, 李增耀. 遮光剂掺杂SiO2气凝胶传热的统一格子Boltzmann模型研究[J]. 化工学报, 2023, 74(5): 1974-1981. |
[13] | 尹驰, 张正国, 凌子夜, 方晓明. 含石蜡@二氧化硅纳米胶囊和碳纤维的相变热界面材料及其散热性能[J]. 化工学报, 2023, 74(4): 1795-1804. |
[14] | 程伟江, 汪何琦, 高翔, 李娜, 马赛男. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584. |
[15] | 曲国娟, 江涛, 刘涛, 马骧. 超分子策略调控金纳米团簇的发光行为[J]. 化工学报, 2023, 74(1): 397-407. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||