化工学报 ›› 2020, Vol. 71 ›› Issue (9): 4102-4111.DOI: 10.11949/0438-1157.20200569
收稿日期:
2020-05-11
修回日期:
2020-06-24
出版日期:
2020-09-05
发布日期:
2020-09-05
通讯作者:
黄渊余
作者简介:
张玉权(1997—),男,硕士研究生,基金资助:
Yuquan ZHANG(),Shuai GUO,Yuhua WENG,Yongfei YANG,Yuanyu HUANG()
Received:
2020-05-11
Revised:
2020-06-24
Online:
2020-09-05
Published:
2020-09-05
Contact:
Yuanyu HUANG
摘要:
携带荧光探针的药物递送系统在疾病研究中具有同步诊断与治疗的优势。但传统的有机荧光素在高浓度聚集后会出现严重的荧光自淬灭现象,而近年来发现的新型荧光素在高浓度聚集后由于分子内运动受限制,非辐射渠道被抑制,能量以光能的形式释放,产生聚集诱导发光(AIE)现象。基于聚集诱导发光分子的药物递送系统目前已取得良好研究进展,并被用于人类重大疾病的诊治中。本文综述了AIE荧光素用于药物递送以及光动力和光热治疗的研究进展,并对该领域研究面临的挑战和未来方向进行了展望。
中图分类号:
张玉权, 郭帅, 翁郁华, 杨勇飞, 黄渊余. 聚集诱导发光材料在药物递送与疾病治疗中的研究进展[J]. 化工学报, 2020, 71(9): 4102-4111.
Yuquan ZHANG, Shuai GUO, Yuhua WENG, Yongfei YANG, Yuanyu HUANG. Progresses of aggregation-induced emission materials in drug delivery and disease treatment[J]. CIESC Journal, 2020, 71(9): 4102-4111.
1 | Béduneau A, Saulnier P, Benoit J P. Active targeting of brain tumors using nanocarriers[J]. Biomaterials, 2007, 28(33): 4947-4967. |
2 | 康垚, 王素真, 樊江莉,等. 无机纳米药物载体在肿瘤诊疗中的研究进展[J]. 化工学报, 2018, 69(1): 128-140. |
Kang Y, Wang S Z, Fan J L, et al. Progress in inorganic nanomedicine carriers for tumor diagnosis and treatments[J]. CIESC Journal, 2018, 69(1): 128-140. | |
3 | 王宁, 刘硕, 杨雷, 等. 2018全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2019, 5(1): 87-97. |
Wang N, Liu S, Yang L, et al. Interpretation on the report of global cancer statistics 2018[J]. Journal of Multidisciplinary Cancer Management (Electronic Version), 2019, 5(1): 87-97. | |
4 | Chen H M, Zhang W Z, Zhu G Z, et al. Rethinking cancer nanotheranostics[J]. Nat. Rev. Mater., 2017, 2(7): 17024. |
5 | Cortes J, Perez-García J M, Llombart-Cussac A, et al. Enhancing global access to cancer medicines[J]. CA: A Cancer Journal for Clinicians, 2020, 70(2): 105-124. |
6 | Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394-424. |
7 | Aberle D R, Adams A M, Berg C D, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening[J]. N. Engl. J. Med., 2011, 365(5): 395-409. |
8 | Murphy G, Haider M, Ghai S, et al. The expanding role of MRI in prostate cancer[J]. American Journal of Roentgenology, 2013, 201(6): 1229-1238. |
9 | Barrington S F, Kluge R. FDG PET for therapy monitoring in Hodgkin and non-Hodgkin lymphomas[J]. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44: 97-110. |
10 | 张世玲, 彭孝军. 氟离子荧光探针的研究进展[J]. 化工学报, 2016, 67(1): 191-201. |
Zhang S L, Peng X J. Research progress on fluorescent probes for fluoride ions[J]. CIESC Journal, 2016, 67(1): 191-201. | |
11 | Jiang Y Y, Pu K Y. Advanced photoacoustic imaging applications of near-infrared absorbing organic nanoparticles[J]. Small, 2017, 13(30): 1700710. |
12 | 杨志广, 江鑫梅, 程春艳, 等. 线粒体靶向型离子荧光探针的研究进展[J]. 化工学报, 2019, 70(6): 2060-2074. |
Yang Z G, Jiang X M, Cheng C Y, et al. Research progress of mitochondria-targeted fluorescent probes for ions[J]. CIESC Journal, 2019, 70(6): 2060-2074. | |
13 | Ding D, Li K, Liu B, et al. Bioprobes based on AIE fluorogens[J]. Acc. Chem. Res., 2013, 46(11): 2441-2453. |
14 | 赵秋丽, 杨庆浩. 传统生色团的改造:从聚集导致荧光猝灭到聚集诱导发光[J]. 功能材料, 2015, 46(14): 14001-14011. |
Zhao Q L, Yang Q H. Transforming the behavior of conventional chromophores from aggregation-caused quenching to aggregation-induced emission[J]. Journal of Functional Materials, 2015, 46(14): 14001-14011. | |
15 | Zhang J, Wang Q, Guo Z Q, et al. High-fidelity trapping of spatial-temporal mitochondria with rational design of aggregation-induced emission probes[J]. Adv. Funct. Mater., 2019, 29(16): 1808153-1808164. |
16 | Gu X G, Kwok R T K, Lam J W Y, et al. AIEgens for biological process monitoring and disease theranostics[J]. Biomaterials, 2017, 146: 115-135. |
17 | Luo J, Xie Z, Lam J W, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chem. Commun., 2001, (18): 1740-1741. |
18 | Shi L, Li K, Li L L, et al. Novel easily available purine-based AIEgens with colour tunability and applications in lipid droplet imaging[J]. Chem. Sci., 2018, 9(48): 8969-8974. |
19 | Gao M, Su H, Lin G, et al. Targeted imaging of EGFR overexpressed cancer cells by brightly fluorescent nanoparticles conjugated with cetuximab[J]. Nanoscale, 2016, 8(32): 15027-15032. |
20 | Wang Y J, Shi Y, Wang Z, et al. A red to near-IR fluorogen: aggregation-induced emission, large Stokes shift, high solid efficiency and application in cell-imaging[J]. Chemistry, 2016, 22(28): 9784-9791. |
21 | Hong Y, Lam J W, Tang B Z. Aggregation-induced emission[J]. Chem. Soc. Rev., 2011, 40(11): 5361-5388. |
22 | Mei J, Hong Y, Lam J W, et al. Aggregation-induced emission: the whole is more brilliant than the parts[J]. Adv. Mater., 2014, 26(31): 5429-5479. |
23 | Dai Y D, Sun X Y, Sun W, et al. H2O2-responsive polymeric micelles with a benzil moiety for efficient DOX delivery and AIE imaging[J]. Org. Biomol. Chem., 2019, 17(22): 5570-5577. |
24 | Zhang X Y, Zhang X Q, Wang S Q, et al. Facile incorporation of aggregation-induced emission materials into mesoporous silica nanoparticles for intracellular imaging and cancer therapy[J]. ACS Appl. Mater. Interfaces, 2013, 5(6): 1943-1947. |
25 | Li J, Wang J, Li H, et al. Supramolecular materials based on AIE luminogens (AIEgens): construction and applications[J]. Chem. Soc. Rev., 2020, 49(4): 1144-1172. |
26 | Xue X, Zhao Y, Dai L, et al. Spatiotemporal drug release visualized through a drug delivery system with tunable aggregation-induced emission[J]. Adv. Mater., 2014, 26(5): 712-717. |
27 | Gao X Y, Cao J, Song Y N, et al. A unimolecular theranostic system with H2O2-specific response and AIE-activity for doxorubicin releasing and real-time tracking in living cells[J]. RSC Adv., 2018, 8(20): 10975-10979. |
28 | Kim K Y, Jin H, Park J, et al. Mitochondria-targeting self-assembled nanoparticles derived from triphenylphosphonium-conjugated cyanostilbene enable site-specific imaging and anticancer drug delivery[J]. Nano Res., 2018, 11(2): 1082-1098. |
29 | Li Q L, Wang D, Cui Y Z, et al. AIEgen-functionalized mesoporous silica gated by cyclodextrin-modified CuS for cell imaging and chemo-photothermal cancer therapy[J]. ACS Appl. Mater. Interfaces, 2018, 10(15): 12155-12163. |
30 | Jia X B, Zhang Y H, Zou Y, et al. Dual intratumoral redox/enzyme-responsive NO-releasing nanomedicine for the specific, high-efficacy, and low-toxic cancer therapy[J]. Adv. Mater., 2018, 30(30): 1704490-1704499. |
31 | Li D D, Yu J H. AIEgens-functionalized inorganic-organic hybrid materials: fabrications and applications[J]. Small, 2016, 12(47): 6478-6494. |
32 | Li D, Yu J, Xu R. Mesoporous silica functionalized with an AIE luminogen for drug delivery[J]. Chem. Commun., 2011, 47(39): 11077-11079. |
33 | Fan Z Y, Li D D, Yu X, et al. AIE Luminogen-functionalized hollow mesoporous silica nanospheres for drug delivery and cell imaging[J]. Chemistry, 2016, 22(11): 3681-3685. |
34 | Weng Y H, Xiao H H, Zhang M J, et al. RNAi therapeutic and its innovative biotechnological evolution[J]. Biotechnol. Adv., 2019, 37(5): 801-825. |
35 | 黄渊余. 首例RNA干扰药物问世及该领域技术演化历程[J]. 生物化学与生物物理进展, 2019, 46(3): 313-322. |
Huang Y Y. Approval of the first-ever RNAi therapeutics and its technological development history[J]. Progress in Biochemistry and Biophysics, 2019, 46(3): 313-322. | |
36 | He X W, Zhao Z, Xiong L H, et al. Redox-active AIEgen-derived plasmonic and fluorescent core@shell nanoparticles for multimodality bioimaging[J]. J. Am. Chem. Soc., 2018, 140(22): 6904-6911. |
37 | He X W, Yin F, Wang D Y, et al. AIE featured inorganic-organic core@shell nanoparticles for high-efficiency siRNA delivery and real-time monitoring[J]. Nano Lett., 2019, 19(4): 2272-2279. |
38 | Hu R R, Kang Y, Tang B Z. Recent advances in AIE polymers[J]. Polym. J., 2016, 48(4): 359-370. |
39 | Zhang X Y, Wang K, Liu M Y, et al. Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives[J]. Nanoscale, 2015, 7(27): 11486-11508. |
40 | Zhuang W H, Xu Y Y, Li G C, et al. Redox and pH dual-responsive polymeric micelles with aggregation-induced emission feature for cellular imaging and chemotherapy[J]. ACS Appl. Mater. Interfaces, 2018, 10(22): 18489-18498. |
41 | Wang Z Y, Wang C, Gan Q, et al. Donor-acceptor-type conjugated polymer-based multicolored drug carriers with tunable aggregation-induced emission behavior for self-illuminating cancer therapy[J]. ACS Appl. Mater. Interfaces, 2019, 11(45): 41853-41861. |
42 | Lee Y, Ishii T, Cabral H, et al. Charge-conversional polyionic complex micelles-efficient nanocarriers for protein delivery into cytoplasm[J]. Angew. Chem. Int. Ed., 2009, 48(29): 5309-5312. |
43 | Liao J H, Song Y J, Liu C, et al. Dual-drug delivery based charge-conversional polymeric micelles for enhanced cellular uptake and combination therapy[J]. Polym. Chem., 2019, 10(43): 5879-5893. |
44 | Xiao H J, Guo Y P, Liu H M, et al. Structure-based design of charge-conversional drug self-delivery systems for better targeted cancer therapy[J]. Biomaterials, 2020, 232: 119701-119714. |
45 | Yu T, Zhuang W H, Su X, et al. Dual-responsive micelles with aggregation-induced emission feature and two-photon aborsption for accurate drug delivery and bioimaging[J]. Bioconjugate Chem., 2019, 30(7): 2075-2087. |
46 | Wang S, Huang P, Chen X Y. Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization[J]. Adv. Mater., 2016, 28(34): 7340-7364. |
47 | Hu J, Zhuang W H, Ma B X, et al. A two- photon fluorophore labeled multifunctional drug carrier for targeting cancer therapy, inflammation restraint and AIE active bioimaging[J]. J. Mater. Chem. B, 2019, 7(24): 3894-3908. |
48 | Wu P, Wang X F, Wang Z G, et al. Light-activatable prodrug and AIEgen copolymer nanoparticle for dual-drug monitoring and combination therapy[J]. ACS Appl. Mater. Interfaces, 2019, 11(20): 18691-18700. |
49 | Dong Z Z, Bi Y Z, Cui H R, et al. AIE supramolecular assembly with FRET effect for visualizing drug delivery[J]. ACS Appl. Mater. Interfaces, 2019, 11(27): 23840-23847. |
50 | Li B, He T, Shen X, et al. Fluorescent supramolecular polymers with aggregation induced emission properties[J]. Polym. Chem., 2019, 10(7): 796-818. |
51 | Yu G C, Zhao R, Wu D, et al. Pillar[5]arene-based amphiphilic supramolecular brush copolymer: fabrication, controllable self-assembly and application in self-imaging targeted drug delivery[J]. Polym. Chem., 2016, 7(40): 6178-6188. |
52 | Zhang C Q, Zhang T B, Jin S B, et al. Virus-inspired self-assembled nanofibers with aggregation-induced emission for highly efficient and visible gene delivery[J]. ACS Appl. Mater. Interfaces, 2017, 9(5): 4425-4432. |
53 | Zhang T B, Guo W S, Zhang C Q, et al. Transferrin-dressed virus-like ternary nanoparticles with aggregation-induced emission for targeted delivery and rapid cytosolic release of siRNA[J]. ACS Appl. Mater. Interfaces, 2017, 9(19): 16006-16014. |
54 | Wang H, Yu D, Fang J, et al. Renal-clearable porphyrinic metal-organic framework nanodots for enhanced photodynamic therapy[J]. ACS Nano, 2019, 13(8): 9206-9217. |
55 | Castano A P, Mroz P, Hamblin M R. Photodynamic therapy and anti-tumour immunity[J]. Nat. Rev. Cancer, 2006, 6(7): 535-545. |
56 | Lovell J F, Chen J, Jarvi M T, et al. FRET quenching of photosensitizer singlet oxygen generation[J]. J. Phys. Chem. B, 2009, 113(10): 3203-3211. |
57 | Mei J, Leung N L, Kwok R T, et al. Aggregation-induced emission: together We shine, united We soar![J]. Chem. Rev., 2015, 115(21): 11718-11940. |
58 | Zhuang W H, Yang L, Ma B X, et al. Multifunctional two-photon AIE luminogens for highly mitochondria-specific bioimaging and efficient photodynamic therapy[J]. ACS Appl. Mater. Interfaces, 2019, 11(23): 20715-20724. |
59 | Dai J, Li Y H, Long Z, et al. Efficient near-infrared photosensitizer with aggregation-induced emission for imaging-guided photodynamic therapy in multiple xenograft tumor models[J]. ACS Nano, 2020, 14(1): 854-866. |
60 | Zhou Z J, Song J B, Nie L M, et al. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy[J]. Chem. Soc. Rev., 2016, 45(23): 6597-6626. |
61 | Chen H C, Tian J W, He W J, et al. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells[J]. J. Am. Chem. Soc., 2015, 137(4): 1539-1547. |
62 | Cheng Y, Cheng H, Jiang C, et al. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy[J]. Nat. Commun., 2015, 6: 8785-8793. |
63 | Gao F L, Wu J, Gao H Q, et al. Hypoxia-tropic nanozymes as oxygen generators for tumor-favoring theranostics[J]. Biomaterials, 2020, 230: 119635-119647. |
64 | Zhang L P, Li Y Y, Che W L, et al. AIE multinuclear Ir(III) complexes for biocompatible organic nanoparticles with highly enhanced photodynamic performance[J]. Adv. Sci., 2019, 6(5): 1802050-1802057. |
65 | Wang X D, Dai J, Wang X Y, et al. MnO2-DNAzyme-photosensitizer nanocomposite with AIE characteristic for cell imaging and photodynamic-gene therapy[J]. Talanta, 2019, 202: 591-599. |
66 | Jin G R, Feng G X, Qin W, et al. Multifunctional organic nanoparticles with aggregation-induced emission (AIE) characteristics for targeted photodynamic therapy and RNA interference therapy[J]. Chem. Commun., 2016, 52(13): 2752-2755. |
67 | Wang Y Z, Song Y J, Zhu G X, et al. Highly biocompatible BSA-MnO2 nanoparticles as an efficient near-infrared photothermal agent for cancer therapy[J]. Chin. Chem. Lett., 2018, 29(11): 1685-1688. |
68 | Doughty A C V, Hoover A R, Layton E, et al. Nanomaterial applications in photothermal therapy for cancer[J]. Materials, 2019, 12(5): 779-793. |
69 | Song X J, Chen Q, Liu Z. Recent advances in the development of organic photothermal nano-agents[J]. Nano Res., 2015, 8(2): 340-354. |
70 | Zhang H, Wang J, Hu M, et al. Photothermal-assisted surface-mediated gene delivery for enhancing transfection efficiency[J]. Biomater. Sci., 2019, 7(12): 5177-5186. |
71 | Yan H, Teh C, Sreejith S, et al. Functional mesoporous silica nanoparticles for photothermal-controlled drug delivery in vivo[J]. Angew. Chem. Int. Ed., 2012, 51(33): 8373-8377. |
72 | Alifu N, Zebibula A, Qi J, et al. Single-molecular near-infrared-II theranostic systems: ultrastable aggregation-induced emission nanoparticles for long-term tracing and efficient photothermal therapy[J]. ACS Nano, 2018, 12(11): 11282-11293. |
73 | Wang J, Xu M S, Wang K, et al. Stable mesoporous silica nanoparticles incorporated with MoS2 and AIE for targeted fluorescence imaging and photothermal therapy of cancer cells[J]. Colloids and Surfaces B: Biointerfaces, 2019, 174: 324-332. |
74 | Fan Z Y, Ren L, Zhang W J, et al. AIE luminogen-functionalised mesoporous silica nanoparticles as nanotheranostic agents for imaging guided synergetic chemo-/photothermal therapy[J]. Inorg. Chem. Front., 2017, 4(5): 833-839. |
[1] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[2] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[3] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[4] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[5] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[6] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[7] | 朱理想, 罗默也, 张晓东, 龙涛, 余冉. 醌指纹法指示三氯乙烯污染土功能微生物活性应用研究[J]. 化工学报, 2023, 74(6): 2647-2654. |
[8] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[9] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[10] | 黄玉龙, 吕凡, 仇俊杰, 章骅, 何品晶. 易腐垃圾厌氧消化沼液理化性质及VOCs分子特征[J]. 化工学报, 2023, 74(3): 1275-1285. |
[11] | 张浩, 王子悦, 程钰洁, 何晓辉, 纪红兵. 单原子催化剂规模化制备的研究进展[J]. 化工学报, 2023, 74(1): 276-289. |
[12] | 曲国娟, 江涛, 刘涛, 马骧. 超分子策略调控金纳米团簇的发光行为[J]. 化工学报, 2023, 74(1): 397-407. |
[13] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[14] | 张静, 刘涛, 张伟, 储震宇, 金万勤. 一种新型分离传感膜的制备及其血糖的动态监测[J]. 化工学报, 2023, 74(1): 459-468. |
[15] | 张婉晨, 陈晓阳, 吕秋秋, 钟秦, 朱腾龙. Co掺杂SrTi0.3Fe0.7O3-δ 阳极SOFC在化工副产气燃料下的性能及稳定性[J]. 化工学报, 2022, 73(9): 4079-4086. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||