1 |
NASA. Space station research experiment [EB/OL]. [2019-10-11]. http: //www. nasa. gov/mission_pages/station/research/experiments_ category/index. html.
|
2 |
NASA. Microalgae biosynthesis in microgravity [EB/OL]. [2019-10-11]. https: //www. nasa. gov/mission_pages/station/research/experiments/explorer/Investigation. html?#id=7689.
|
3 |
Brinckmann E. ESA hardware for plant research on the international space station [J]. Advances in Space Research, 2005, 36(7): 1162-1166.
|
4 |
Barmin I, Egorov A, Senchenkov A, et al. Utilization of the “progress” transport spacecraft as an element of the international space station for experiments under μg-conditions [C]// First International Symposium on Microgravity Research & Applications in Physical Sciences and Biotechnology. 2000: 1039-1044.
|
5 |
NASA. Interfacial behaviors and heat transfer characteristics in boiling two-phase flow [EB/OL]. [2019-10-11]. https: //www. nasa. gov/mission_pages/station/research/experiments/explorer/Investigation. html?#id=1034.
|
6 |
Simon N E. Space life and biomedical sciences in support of the global exploration roadmap and societal development [J]. Space Policy, 2014, 30: 143-145.
|
7 |
Ishioka N, Suzuki H, Asashima M, et al. Development and verification of hardware for life science experiments in the Japanese experiment module “Kibo” on the international space station [J]. Journal of Gravitational Physiology: a Journal of the International Society for Gravitational Physiology, 2004, 11(1): 81-91.
|
8 |
Larson M, Croonquist A, Dick G J, et al. The science capability of the low temperature microgravity physics facility [J]. Physica B - Condensed Matter, 2003, 329: 1588-1589.
|
9 |
Donald W. Phase Ⅲ integrated water recovery testing at MSFC: international space station recipient mode test results and lessons learned [J]. Journal of Aerospace, 1997, 106(1): 715-733.
|
10 |
Stephen R. Concepts for advanced waste water processing systems [C]// 24th International Conference on Environmental Systems and 5th European Symposium on Space Environmental Control Systems.1994: 1356-1365.
|
11 |
Miernik J H, Shah B H, McGriff C F. Waste water processing technology for space station freedom: comparative test data analysis [R]. SAE Paper,1991, 1001): 1129-1140.
|
12 |
尚传勋, 周抗寒, 刘成良. 空间站尿及废水处理与再生技术试验研究[J]. 航天医学与医学工程, 1997, 10(5): 16-21.
|
|
Shang C X, Zhou K H,Liu C L. An experimental study of regeneration device for urine and water in space station [J]. Space Medicine & Medical Engineering, 1997, 10(5): 16-21.
|
13 |
苏娜娜. 基于特殊环境要求的电气部件温度适应性加固技术研究[D]. 北京: 中国科学院研究生院, 2016.
|
|
Su N N. Research of thermal adaptability reinforcement technology for electrical parts used in special environment [D]. Beijing: University of Chinese Academy of Sciences, 2016.
|
14 |
梅源, 战栋栋, 钱吉裕. 基于热电致冷的雷达高频箱环控技术研究[J]. 电子机械工程, 2010, 26(4): 18-21.
|
|
Mei Y, Zhan D D, Qian J Y. Environmental control design of radar HF equipments case based on TEC technique [J]. Electro-mechanical Engineering, 2010, 26(4): 18-21.
|
15 |
张信荣. 空间站环控生保系统热管理研究[D]. 北京: 清华大学, 2002.
|
|
Zhang X R. Thermal management of environment control and life support system of space stations [D]. Beijing: Tsinghua University, 2002.
|
16 |
Zebarjadi M, Esfarjani K, Dresselhaus M S, et al. Perspectives on thermoelectrics: from fundamentals to device applications [J]. Energy and Environmental Science, 2012, 5(1): 5147-5162.
|
17 |
Alleno E, Lamquembe N, Cardoso G R, et al. A thermoelectric generator based on an n-type clathrate and a p-type skutterudite unicouple [J]. Physica Status Solidi A - Applications and Materials Science, 2014, 211(6): 1293-1300.
|
18 |
Semena N P. The features of application of thermoelectric converters in spacecraft systems of temperature control [J]. Thermophysics and Aeromechanics, 2013, 20(2): 211-222.
|
19 |
Gaurav K, Pandey S K. Efficiency calculation of a thermoelectric generator for investigating the applicability of various thermoelectric materials [J]. Journal of Renewable and Sustainable Energy, 2017, 9(1): 014701.
|
20 |
Bugby D, Zimbeck W, Kroliczek E. Thermal management architecture for future responsive spacecraft [C]// Space, Propulsion & Energy Sciences International Forum Spesif. 2009: 30-38.
|
21 |
胡浩茫, 葛天舒, 代彦军, 等. 热电制冷技术最新进展: 从材料到应用 [J]. 制冷技术, 2016, 36(5): 42-52.
|
|
Hu H M, Ge T S, Dai Y J, et al. Up to date development of thermoelectric refrigeration technology: from material to application [J]. Chinese Journal of Refrigeration Technology, 2016, 36(5): 42-52.
|
22 |
刘忠兵. 气温自适应墙体与热电空调系统性能研究[D]. 长沙: 湖南大学, 2016.
|
|
Liu Z B. Study on the performance of self-adaptive wall and thermoelectric air conditioning system [D]. Changsha: Hunan University, 2016.
|
23 |
吕朋. 基于热电制冷技术的热响应测试系统研制[D]. 长春: 吉林大学, 2012.
|
|
Lyu P. Development of thermal response test system based on thermoelectric refrigeration technology [D]. Changchun: Jilin University, 2012.
|
24 |
张博, 王亚雄. 热电制冷液体冷却散热器的实验研究[J]. 化工学报, 2014, 65(9): 3441-3446.
|
|
Zhang B, Wang Y X. An experimental investigation on a novel liquid thermoelectric cooling device [J]. CIESC Journal, 2014, 65(9): 3441-3446.
|
25 |
王坤, 薛庆峰, 刘明亮, 等. 热电式车载冷暖箱降温特性影响因素研究与方案优化[J]. 制冷技术, 2016, 36(4): 68-74.
|
|
Wang K, Xue Q F, Liu M L, et al. Research on influencing factors of cooling characteristics and scheme optimization for vehicle's thermoelectric cooling/heating box [J]. Chinese Journal of Refrigeration Technology, 2016, 36(4): 68-74.
|
26 |
赵举, 朱洪亮, 仇和兵, 等. 多级热电制冷数值模拟与实验研究[J]. 制冷技术, 2015, 35(4): 17-21.
|
|
Zhao J, Zhu H L, Qiu H B, et al. Numerical simulation and experimental research on multistage thermoelectric refrigeration [J]. Chinese Journal of Refrigeration Technology, 2015, 35(4): 17-21.
|
27 |
申利梅, 陈焕新, 梅佩佩, 等. 热电制冷模块热连接与电连接的性能优化分析[J]. 化工学报, 2012, 63(5): 1367-1372.
|
|
Shen L M, Chen H X, Mei P P, et al. Optimization analysis on thermal connection and electrical connection of thermoelectric refrigeration [J]. CIESC Journal, 2012, 63(5): 1367-1372.
|
28 |
石宇. 空间生物样品处理装置的研制及其地面验证[D]. 北京: 北京理工大学, 2015.
|
|
Shi Y. Development of biological sample processing equipment and ground verification [D]. Beijing: Beijing Institute of Technology, 2015.
|
29 |
梁艳丽. 功能化温度敏感色谱材料的制备及性能研究[D]. 北京: 北京理工大学, 2015.
|
|
Liang Y L. Preparation and investigation on performance of functionalized thermally response chromatographic materials [D]. Beijing: Beijing Institute of Technology, 2015.
|
30 |
张腾, 申利梅, 陈焕新, 等. 药物存储用热电除湿装置性能实验及参数优化[J]. 化工学报, 2016, 67(7): 2718-2723.
|
|
Zhang T, Shen L M, Chen H X, et al. Performance experiment of thermoelectric dehumidification device used for medicine storage and its parameter optimization [J]. CIESC Journal, 2016, 67(7): 2718-2723.
|
31 |
沙拉, 塞库利克. 换热器设计技术[M]. 程林, 译. 北京: 机械工业出版社, 2010: 104-107.
|
|
Shah R K, Sekulic D P. Fundamentals of Heat Exchanger Design [M]. Cheng L, trans. Beijing: China Machine Press, 2010: 104-107.
|