1 |
Zhao D L, Tan G. A review of thermoelectric cooling: materials, modeling and applications [J]. Applied Thermal Engineering, 2014, 66(1/2): 15-24.
|
2 |
Enescu D, Virjoghe E O. A review on thermoelectric cooling parameters and performance [J]. Renewable & Sustainable Energy Reviews, 2014, 38: 903-916.
|
3 |
Shinohara Y. Recent progress of thermoelectric devices or modules in Japan [J]. Materials Today Proceedings, 2017, 4(12): 12333-12342.
|
4 |
Sulaiman A C, Amin N A M, Basha M H, et al. Cooling performance of thermoelectric cooling (TEC) and applications: a review [C]// Matec Web of Conferences. 2018, 225: 03021.
|
5 |
张信荣. 空间站环控生保系统热管理研究[D]. 北京: 清华大学, 2002.
|
|
Zhang X R. Thermal management of environment control and life support system of space stations [D]. Beijing: Tsinghua University, 2002.
|
6 |
申利梅. 基于半导体激光冷却的热电阶梯脉冲过冷特性的研究[D]. 武汉: 华中科技大学, 2014.
|
|
Shen L M. The study of thermoelectric step-pulse supercooling characteristic based on the cooling system of semiconductor laser [D]. Wuhan: Huazhong University of Science and Technology, 2014.
|
7 |
Yamashita O, Sugihara S. High-performance bismuth-telluride compounds with highly stable thermoelectric figure of merit [J]. Journal of Materials Science, 2005, 40(24): 6439-6444.
|
8 |
Yamashita O. Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the cooling performance [J]. Applied Energy, 2009, 86(9): 1746-1756.
|
9 |
Hao F, Qiu P, Tang Y, et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 ℃ [J]. Energy & Environmental Science, 2016, 9(10): 3120-3127.
|
10 |
朱建军. 高效热电转换装置性能评估及散热问题的研究[D]. 北京: 清华大学, 2012.
|
|
Zhu J J. Studies on performance-evaluation and heat-dissipation problem of high-efficiency thermoelectric comversion devices [D]. Beijing: Tsinghua University, 2012.
|
11 |
Venkatasubramanian R, Silvola E, Colpitts T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit [J]. Nature, 2001, 413(6856): 597-602.
|
12 |
Min G, Rowe D M. Improved model for calculating the coefficient of performance of a Peltier module [J]. Energy Conversion & Management, 2000, 41(2): 163-171.
|
13 |
Cheng Y H, Lin W K. Geometric optimization of thermoelectric coolers in a confined volume using genetic algorithms [J]. Applied Thermal Engineering, 2005, 25(17/18): 2983-2997.
|
14 |
张晓波, 徐象国. 多目标约束下半导体制冷片几何结构参数的优化设计[J]. 制冷学报, 2018, 39(3): 22-30.
|
|
Zhang X B, Xu X G. Optimizing the geometric structure of a thermoelectric cooler with multi-objective constraint [J]. Journal of Refrigeration, 2018, 39(3): 22-30.
|
15 |
Chen W H, Liao C Y, Hung C I. A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect [J]. Applied Energy, 2012, 89(1): 464-473.
|
16 |
Huang Y X, Wang X D, Cheng C H, et al. Geometry optimization of thermoelectric coolers using simplified conjugate-gradient method [J]. Energy, 2013, 59: 689-697.
|
17 |
Lin S M, Yu J L. Optimization of a trapezoid-type two-stage Peltier couples for thermoelectric cooling applications [J]. International Journal of Refrigeration, 2016, 65: 103-110.
|
18 |
Gong T R, Gao L, Wu Y J, et al. Numerical simulation on a compact thermoelectric cooler for the optimized design [J]. Applied Thermal Engineering, 2019, 146: 815-825.
|
19 |
Gong T R, Wu Y J, Gao L, et al. Thermo-mechanical analysis on a compact thermoelectric cooler [J]. Energy, 2019, 172: 1211-1224.
|
20 |
Wang X D, Huang Y X, Cheng C H, et al. A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field [J]. Energy, 2012, 47(1): 488-497.
|
21 |
Yamada Y, Yanase M, Miura D, et al. Novel heatsink for power semiconductor module using high thermal conductivity graphite [J]. Microelectronics & Reliability, 2016, 64: 484-488.
|
22 |
Lu X, Zhao D L, Ma T, et al. Thermal resistance matching for thermoelectric cooling systems [J]. Energy Conversion & Management, 2018, 169: 186-193.
|
23 |
Zhou Y Y, Yu J L. Design optimization of thermoelectric cooling systems for applications in electronic devices [J]. International Journal of Refrigeration, 2012, 35(4): 1139-1144.
|
24 |
Zhu L, Tan H B, Yu J L. Analysis on optimal heat exchanger size of thermoelectric cooler for electronic cooling applications [J]. Energy Conversion & Management, 2013, 76: 685-690.
|
25 |
Luo Y Q, Zhang L, Li J L, et al. Study on thermal conductance allocation ratio of heat sink of thermoelectric cooler for electronic device in cold region [J]. Energy Procedia, 2015, 75: 603-607.
|
26 |
Wang X, Yu J L, Ma M. Optimization of heat sink configuration for thermoelectric cooling system based on entropy generation analysis [J]. International Journal of Heat and Mass Transfer, 2013, 63: 361-365.
|
27 |
Aranguren P, Diazdegarayo S, Martínez A, et al. Heat pipes thermal performance for a reversible thermoelectric cooler-heat pump for a nZEB [J]. Energy and Buildings, 2019, 187: 163-172.
|
28 |
Liu Z B, Li W J, Zhang L, et al. Experimental study and performance analysis of solar-driven exhaust air thermoelectric heat pump recovery system [J]. Energy and Buildings, 2019, 186: 46-55.
|
29 |
周武洋, 王勇. 冷热端不同散热方式对热电制冷性能的影响 [J]. 中国科学院大学学报, 2019, 36(2): 162-168.
|
|
Zhou W Y, Wang Y. Effects of different convective conditions at cooling and heating ends on the performance of thermoelectric refrigeration [J]. Journal of University of Chinese Academy of Sciences, 2019, 36(2): 162-168.
|
30 |
Shen L M, Xiao F, Chen H X, et al. Numerical and experimental analysis of transient supercooling effect of voltage pulse on thermoelectric element [J]. International Journal of Refrigeration, 2012, 35(4): 1156-1165.
|
31 |
Kim H S, Liu W, Ren Z. Efficiency and output power of thermoelectric module by taking into account corrected Joule and Thomson heat [J]. Journal of Applied Physics, 2015, 118(11): 115103.
|