化工学报 ›› 2021, Vol. 72 ›› Issue (1): 158-166.DOI: 10.11949/0438-1157.20200890
收稿日期:
2020-07-06
修回日期:
2020-08-20
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
徐建鸿
作者简介:
黄晋培(1994—),男,博士研究生,基金资助:
HUANG Jinpei1(),HUANG Dan2,WANG Fajun1,XU Jianhong1()
Received:
2020-07-06
Revised:
2020-08-20
Online:
2021-01-05
Published:
2021-01-05
Contact:
XU Jianhong
摘要:
霍夫曼重排反应作为制备伯胺及其衍生物的一种重要手段,在药物合成和功能材料制备等领域有广泛的应用。传统霍夫曼重排反应工艺存在反应效率低、流程烦琐和安全性差等问题。针对以上问题,研究者们主要从反应条件优化和过程强化两方面入手。通过反应条件优化,发展了许多温和、高选择性的反应工艺条件,为不同酰胺底物的反应方案设计提供了更多选择;微波辅助、电化学合成以及微化工技术等新型反应过程强化技术的出现,为实现高效绿色的霍夫曼重排反应创造了有利的条件。本文重点阐述了霍夫曼重排反应在反应条件优化和过程强化方面的最新研究进展。在此基础上,对该反应未来的研究方向进行了展望。
中图分类号:
黄晋培, 黄丹, 王法军, 徐建鸿. 霍夫曼重排反应过程的研究进展[J]. 化工学报, 2021, 72(1): 158-166.
HUANG Jinpei, HUANG Dan, WANG Fajun, XU Jianhong. Research progress of Hofmann rearrangement reaction[J]. CIESC Journal, 2021, 72(1): 158-166.
1 | Hofmann A V. Ueber die Einwirkung des Broms in alkalischer Lösung auf Amide [J]. Berichte Der Deutschen Chemischen Gesellschaft, 1881, 14(2): 2725-2736. |
2 | Hernández E, Vélez J M, Vlaar C P. Synthesis of 1,4-dihydro-benzo[d][1,3]oxazin-2-ones from phthalides via an aminolysis-Hofmann rearrangement protocol [J]. Tetrahedron Letters, 2007, 48(51): 8972-8975. |
3 | Yu C, Jiang Y, Liu B, et al. A facile synthesis of 2-oxazolidinones via Hofmann rearrangement mediated by bis(trifluoroacetoxy)iodobenzene [J]. Tetrahedron Letters, 2001, 42(8): 1449-1452. |
4 | Dehli J R, Gotor V. Dynamic kinetic resolution of 2-oxocycloalkanecarbonitriles: chemoenzymatic syntheses of optically active cyclic β- and γ-amino alcohols [J]. The Journal of Organic Chemistry, 2002, 67(19): 6816-6819. |
5 | Pearson C M, Fyfe J W B, Snaddon T N. A regio- and stereodivergent synthesis of homoallylic amines by a one-pot cooperative-catalysis-based allylic alkylation/Hofmann rearrangement strategy [J]. Angewandte Chemie International Edition, 2019, 58(31): 10521-10527. |
6 | Okamoto N, Miwa Y, Minami H, et al. Concise one-pot tandem synthesis of indoles and isoquinolines from amides [J]. Angewandte Chemie International Edition, 2009, 48(51): 9693-9696. |
7 | Zhang T Y, Stout J R, Keay J G, et al. Regioselective synthesis of 2-chloro-3-pyridinecarboxylates [J]. Tetrahedron, 1995, 51(48): 13177-13184. |
8 | Seki M, Shimizu T, Inubushi K. A novel synthesis of a key intermediate for (+)-biotin from l-aspartic acid [J]. Synthesis, 2002, 2002(3): 361-364. |
9 | Schultz A G, Wang A. First asymmetric synthesis of a hasubanan alkaloid. Total synthesis of (+)-cepharamine [J]. Journal of the American Chemical Society, 1998, 120(32): 8259-8260. |
10 | Caron S, Dugger R W, Ruggeri S G, et al. Large-scale oxidations in the pharmaceutical industry [J]. Chemical Reviews, 2006, 106(7): 2943-2989. |
11 | Evans D A, Scheidt K A, Downey C W. Synthesis of (-)-epibatidine [J]. Organic Letters, 2001, 3(19): 3009-3012. |
12 | Kimishima A, Umihara H, Mizoguchi A, et al. Synthesis of (-)-oxycodone [J]. Organic Letters, 2014, 16(23): 6244-6247. |
13 | Inai M, Goto T, Furuta T, et al. Stereocontrolled total synthesis of (-)-myriocin [J]. Tetrahedron: Asymmetry, 2008, 19(24): 2771-2773. |
14 | Tun M K M, Wüstmann D J, Herzon S B. A robust and scalable synthesis of the potent neuroprotective agent (-)-huperzine A [J]. Chemical Science, 2011, 2(11): 2251-2253. |
15 | Abrecht S, Adam J M, Bromberger U, et al. An efficient process for the manufacture of carmegliptin [J]. Organic Process Research & Development, 2011, 15(3): 503-514. |
16 | Greshock T J, Funk R L. An approach to the total synthesis of welwistatin [J]. Organic Letters, 2006, 8(12): 2643-2645. |
17 | Wang Y, Liu X, Deng L. Dual-function cinchona alkaloid catalysis: catalytic asymmetric tandem conjugate addition-protonation for the direct creation of nonadjacent stereocenters [J]. Journal of the American Chemical Society, 2006, 128(12): 3928-3930. |
18 | Poullennec K G, Romo D. Enantioselective total synthesis of (+)-dibromophakellstatin [J]. Journal of the American Chemical Society, 2003, 125(21): 6344-6345. |
19 | Vitola G, Buning D, Schumacher J, et al. Development of a novel immobilization method by using microgels to keep enzyme in hydrated microenvironment in porous hydrophobic membranes [J]. Macromol. Biosci., 2017, 17(5):1600381. |
20 | Dai Y, Pang H, Huang J, et al. Tailoring of ammonia reduced graphene oxide into amine functionalized graphene quantum dots through a Hofmann rearrangement [J]. RSC Advances, 2016, 6(41): 34514-34520. |
21 | Wang Z, Pelton R. Aminated thermoresponsive microgels prepared from the Hofmann rearrangement of amides without side reactions [J]. Langmuir, 2014, 30(23): 6763-6767. |
22 | Yu S, Ma M, Liu J, et al. Study on polyamide thin-film composite nanofiltration membrane by interfacial polymerization of polyvinylamine (PVAm) and isophthaloyl chloride (IPC) [J]. Journal of Membrane Science, 2011, 379(1/2): 164-173. |
23 | Pelton R. Polyvinylamine: a tool for engineering interfaces [J]. Langmuir, 2014, 30(51): 15373-15382. |
24 | Yamamoto Y, Sefton M V. Hofmann degradation of acrylamide copolymer: synthesis of amine functionalized thermoplastic hydrogel [J]. Journal of Applied Polymer Science, 1996, 61(2): 351-358. |
25 | Achari A E, Coqueret X, Lablache-Combier A, et al. Preparation of polyvinylamine from polyacrylamide: a reinvestigation of the Hofmann reaction [J]. Macromolecular Chemistry & Physics, 1993, 194(7): 1879-1891. |
26 | 杨晶晶, 唐炳涛, 张淑芬, 等. 低氨基含量聚丙烯酰胺-co-乙烯胺的可控合成 [J]. 化工学报, 2012, 63(3): 955-961. |
Yang J J, Tang B T, Zhang S F, et al. Controllable synthesis of poly (acrylamide-co-vinylamine) with low amino groups [J]. CIESC Journal, 2012, 63(3): 955-961. | |
27 | 叶盼盼, 郑土才, 李静观, 等. Hofmann重排反应的应用进展 [J]. 化工生产与技术, 2013, 20(3): 22-27. |
Ye P P, Zhen T C, Li J G, et al. Application advances of Hofmann rearrangement reactions [J]. Chemical Production and Technology, 2013, 20(3): 22-27. | |
28 | Wallis E S, Lane J F. The Hofmann reaction [J]. Organic Reactions, 2004, 3: 267-306. |
29 | Stieglitz J. The chemistry of diazo-compounds [J]. Journal of the American Chemical Society, 1908, 30(11): 1797-1798. |
30 | Aubé J, Fehl C, Liu R, et al. 6.15 Hofmann, Curtius, Schmidt, Lossen, and Related Reactions [M]//Comprehensive Organic Synthesis II. Elsevier, 2014: 598-635. |
31 | Scriven E F V, Turnbull K. Azides: their preparation and synthetic uses [J]. Chemical Reviews, 1988, 88(2): 297-368. |
32 | Bauer L, Exner O. The chemistry of hydroxamic acids and N-hydroxyimides [J]. Angewandte Chemie International Edition in English, 1974, 13(6): 376-384. |
33 | 胡跃飞,林国强. 现代有机反应第八卷 [M]. 北京: 化学工业出版社, 2013: 105-125. |
Hu Y F, Lin G Q. Modern Organic Reactions Vol. 8 [M]. Beijing: Chemical Industry Press, 2013: 105-125. | |
34 | Ochiai M, Miyamoto K, Hayashi S, et al. Hypervalent N-sulfonylimino-λ3-bromane: active nitrenoid species at ambient temperature under metal-free conditions [J]. Chemical Communications, 2010, 46(4): 511-521. |
35 | Verma R K, Ghosh S. A silicon controlled total synthesis of the antifungal agent (+)-preussin [J]. Chemical Communications, 1997, 17: 1601-1602. |
36 | Amato J S, Bagner C, Cvetovich R J, et al. Development of the Hofmann rearrangement of Nα-tosylasparagine through calorimetric and NMR analysis [J]. The Journal of Organic Chemistry, 1998, 63(25): 9533-9534. |
37 | Brown R, Bennet A, Slebocka-Tilk H. Recent perspectives concerning the mechanism of H3O+- and hydroxide-promoted amide hydrolysis [J]. Accounts of Chemical Research, 1992, 25(11): 481-488. |
38 | Antelo J, Arce F, Parajo M. Kinetic study of the formation of N‐chloramines [J]. International Journal of Chemical Kinetics, 1995, 27(7): 637-647. |
39 | Huang X, Keillor J W. Preparation of methyl carbamates via a modified Hofmann rearrangement [J]. Tetrahedron Letters, 1997, 38(3): 313-316. |
40 | Huang X, Seid M, Keillor J W. A mild and efficient modified Hofmann rearrangement [J]. Journal of Organic Chemistry, 1997, 62(21): 7495-7496. |
41 | Senanayake C H, Fredenburgh L E, Reamer R A, et al. Nature of N-bromosuccinimide in basic media: the true oxidizing species in the Hofmann rearrangement [J]. Journal of the American Chemical Society, 1994, 116(17): 7947-7948. |
42 | Borah A J, Phukan P. Efficient synthesis of methyl carbamate via Hofmann rearrangement in the presence of TsNBr2 [J]. Tetrahedron Letters, 2012, 53(24): 3035-3037. |
43 | Liu P, Wang Z, Hu X. Highly efficient synthesis of ureas and carbamates from amides by iodosylbenzene-induced Hofmann rearrangement [J]. European Journal of Organic Chemistry, 2012, 2012(10): 1994-2000. |
44 | Nishio Y, Yubata K, Wakai Y, et al. Preparation of a novel bromine complex and its application in organic synthesis [J]. Tetrahedron, 2019, 75(10): 1398-1405. |
45 | Debnath P. Recent advances in the Hofmann rearrangement and its application to natural product synthesis [J]. Current Organic Chemistry, 2020, 23(22): 2402-2435. |
46 | Katuri J V P, Nagarajan K. Hofmann rearrangement of primary carboxamides and cyclic imides using DCDMH and application to the synthesis of gabapentin and its potential peptide prodrugs [J]. Tetrahedron Letters, 2019, 60(7): 552-556. |
47 | Crane Z D, Nichols P J, Sammakia T, et al. Synthesis of methyl-1-(tert-butoxycarbonylamino)-2-vinylcyclopropanecarboxylate via a Hofmann rearrangement utilizing trichloroisocyanuric acid as an oxidant [J]. J. Org. Chem., 2011, 76(1): 277-280. |
48 | Yoshimura A, Luedtke M W, Zhdankin V V. (Tosylimino)phenyl-l3-iodane as a reagent for the synthesis of methyl carbamates via Hofmann rearrangement of aromatic and aliphatic carboxamides [J]. J. Org. Chem., 2012, 77(4): 2087-2091. |
49 | Gogoi P, Konwar D. An efficient modification of the Hofmann rearrangement: synthesis of methyl carbamates [J]. Tetrahedron Letters, 2007, 48(4): 531-533. |
50 | Ivanović M, Jevtić I, Došen-Mićović L, et al. Hofmann rearrangement of carboxamides mediated by N-bromoacetamide [J]. Synthesis, 2016, 48(10): 1550-1560. |
51 | Miyamoto K, Sakai Y, Goda S, et al. A catalytic version of hypervalent aryl-λ3-iodane-induced Hofmann rearrangement of primary carboxamides: iodobenzene as an organocatalyst and m-chloroperbenzoic acid as a terminal oxidant [J]. Chemical Communications, 2012, 48(7): 982-984. |
52 | Moriyama K, Ishida K, Togo H. Effect of catalytic alkali metal bromide on Hofmann-type rearrangement of imides [J]. Chem. Commun. (Camb.), 2012, 48(68): 8574-8576. |
53 | Yoshimura A, Middleton K R, Luedtke M W, et al. Hypervalent iodine catalyzed Hofmann rearrangement of carboxamides using oxone as terminal oxidant [J]. J. Org. Chem., 2012, 77(24): 11399-11404. |
54 | Muthyala M K, Velisetti K, Parang K, et al. Advances in functionalized ionic liquids as reagents and scavengers in organic synthesis [J]. Current Organic Chemistry, 2014, 18(19): 2530-2554. |
55 | Pârvulescu V I, Hardacre C. Catalysis in ionic liquids [J]. Chemical Reviews, 2007, 107(6): 2615-2665. |
56 | Hallett J P, Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2 [J]. Chemical Reviews, 2011, 111(5): 3508-3576. |
57 | Iinuma M, Moriyama K, Togo H. Various oxidative reactions with novel ion-supported (diacetoxyiodo)benzenes [J]. Tetrahedron, 2013, 69(14): 2961-2970. |
58 | Das S, Banik R, Kumar B, et al. A green approach for organic transformations using microwave reactor [J]. Current Organic Synthesis, 2019, 16(5): 730-764. |
59 | Das S K. Application of microwave irradiation in the synthesis of carbohydrates [J]. Synlett, 2004, 2004(6): 915-932. |
60 | Takkellapati S R. Microwave-assisted chemical transformations [J]. Current Organic Chemistry, 2013, 17(20): 2305-2322. |
61 | Miranda L S M, da Silva T R, Crespo L T, et al. TBCA mediated microwave-assisted Hofmann rearrangement [J]. Tetrahedron Letters, 2011, 52(14): 1639-1640. |
62 | Francke R, Little R D. Redox catalysis in organic electrosynthesis: basic principles and recent developments [J]. Chem. Soc. Rev., 2014, 43(8): 2492-2521. |
63 | Horn E J, Rosen B R, Baran P S. Synthetic organic electrochemistry: an enabling and innately sustainable method [J]. ACS Central Science, 2016, 2(5): 302-308. |
64 | Yan M, Kawamata Y, Baran P S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance [J]. Chemical Reviews, 2017, 117(21): 13230-13319. |
65 | Matsumura Y, Maki T, Satoh Y. Electrochemically induced Hofmann rearrangement [J]. Tetrahedron Letters, 1997, 38(51): 8879-8882. |
66 | Matsumura Y, Satoh Y, Maki T, et al. The electrochemically induced Hofmann rearrangement and its comparison with the classic Hofmann rearrangement [J]. Electrochimica Acta, 2000, 45(18): 3011-3020. |
67 | Li L, Xue M, Yan X, et al. Electrochemical Hofmann rearrangement mediated by NaBr: practical access to bioactive carbamates [J]. Org. Biomol. Chem., 2018, 16(25): 4615-4618. |
68 | Plutschack M B, Pieber B U, Gilmore K, et al. The Hitchhiker's guide to flow chemistry [J]. Chemical Reviews, 2017, 117(18): 11796-11893. |
69 | Hessel V, Cortese B, de Croon M. Novel process windows—concept, proposition and evaluation methodology, and intensified superheated processing [J]. Chemical Engineering Science, 2011, 66(7): 1426-1448. |
70 | Hessel V. Design and Engineering of Microreactor and Smart-scaled Flow Processes [M]. Multidisciplinary Digital Publishing Institute,2015: 1-3. |
71 | Movsisyan M, Delbeke E, Berton J, et al. Taming hazardous chemistry by continuous flow technology [J]. Chemical Society Reviews, 2016, 45(18): 4892-4928. |
72 | Plouffe P, Macchi A, Roberge D M. From batch to continuous chemical synthesis — a toolbox approach [J]. Organic Process Research & Development, 2014, 18(11): 1286-1294. |
73 | Roberge D M, Ducry L, Bieler N, et al. Microreactor technology: a revolution for the fine chemical and pharmaceutical industries? [J]. Chemical Engineering & Technology, 2005, 28(3): 318-323. |
74 | Yoshida J I, Kim H, Nagaki A. “Impossible” chemistries based on flow and micro [J]. Journal of Flow Chemistry, 2017, 7(3): 60-64. |
75 | Palmieri A, Ley S V, Hammond K, et al. A microfluidic flow chemistry platform for organic synthesis: the Hofmann rearrangement [J]. Tetrahedron Letters, 2009, 50(26): 3287-3289. |
76 | Huang J P, Sang F N, Luo G S, et al. Continuous synthesis of Gabapentin with a microreaction system [J]. Chemical Engineering Science, 2017, 173: 507-513. |
77 | Huang J, Geng Y, Wang Y, et al. Efficient production of cyclopropylamine by a continuous-flow microreaction system [J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16389-16394. |
[1] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[2] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[3] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[4] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[5] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[6] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[7] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[8] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[9] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[10] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[11] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[12] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[13] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[14] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[15] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||