化工学报 ›› 2021, Vol. 72 ›› Issue (2): 799-813.DOI: 10.11949/0438-1157.20200570
收稿日期:
2020-05-11
修回日期:
2020-08-11
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
王志
作者简介:
杨丰瑞(1996—),男,硕士研究生,基金资助:
YANG Fengrui(),WANG Zhi(),YAN Fangzheng,HAN Xianglei,WANG Jixiao
Received:
2020-05-11
Revised:
2020-08-11
Online:
2021-02-05
Published:
2021-02-05
Contact:
WANG Zhi
摘要:
一价和二价无机盐混合物溶液的分离在众多工业领域需求巨大,纳滤(NF)是新兴的一价/二价无机盐溶液分离方法,在经济性和可操作性上具有潜在优势。本文首先介绍了NF膜中离子跨膜传递机理的主流观点,分析了水合离子尺寸、膜结构、水合离子-水-膜相互作用以及进料液组成对离子跨膜传递过程的影响。接着介绍了高通量NF膜和高选择性NF膜的制备方法。并且概述了NF过程分离一价/二价无机盐溶液在资源开采、氯碱盐水脱硝、含盐废水处理、水软化和重金属离子去除领域的应用。分析了已有工作中存在的问题,并对该领域的发展前景进行了展望。
中图分类号:
杨丰瑞, 王志, 燕方正, 韩向磊, 王纪孝. 纳滤用于一价/二价无机盐溶液分离研究进展[J]. 化工学报, 2021, 72(2): 799-813.
YANG Fengrui, WANG Zhi, YAN Fangzheng, HAN Xianglei, WANG Jixiao. Progress in separation of monovalent/divalent inorganic salt solutions by nanofiltration[J]. CIESC Journal, 2021, 72(2): 799-813.
1 | Asadi T A, Feng Y, Weber M, et al. 110th anniversary: selection of cross-linkers and cross-linking procedures for the fabrication of solvent-resistant nanofiltration membranes: a review[J]. Industrial & Engineering Chemistry Research, 2019, 58(25): 10678-10691. |
2 | van der Bruggen B, Vandecasteele C, van Gestel T, et al. A review of pressure-driven membrane processes in wastewater treatment and drinking water production[J]. Environmental Progress, 2003, 22(1): 46-56. |
3 | Malaisamy R, Talla-Nwafo A, Jones K L. Polyelectrolyte modification of nanofiltration membrane for selective removal of monovalent anions[J]. Separation and Purification Technology, 2011, 77(3): 367-374. |
4 | Samuel de Lint W B, Benes N E. Predictive charge-regulation transport model for nanofiltration from the theory of irreversible processes[J]. Journal of Membrane Science, 2004, 243(1/2):365-377. |
5 | Straatsma J, Bargeman G, van der Horst H C, et al. Can nanofiltration be fully predicted by a model?[J]. Journal of Membrane Science, 2002, 198(2): 273-284. |
6 | 王晓琳, 涂丛慧, 方彦彦, 等. 纳滤膜孔结构、荷电性质、分离机理及动电性质研究进展[J]. 膜科学与技术, 2011, 31(3): 127-134. |
Wang X L, Tu C H, Fang Y Y, et al. The researches on the pore structure, charge property, separation mechanism and electrokinetic phenomena of nanofiltration membranes[J]. Membrane Science and Technology, 2011, 31(3): 127-134. | |
7 | Bandini S, Vezzani D. Nanofiltration modeling: the role of dielectric exclusion in membrane characterization[J]. Chemical Engineering Science, 2003, 58(15): 3303-3326. |
8 | Szymczyk A, Fievet P. Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model[J]. Journal of Membrane Science, 2005, 252(1/2): 77-88. |
9 | Tansel B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects[J]. Separation and Purification Technology, 2012, 86: 119-126. |
10 | Epsztein R, Shaulsky E, Dizge N, et al. Role of ionic charge density in donnan exclusion of monovalent anions by nanofiltration[J]. Environmental Science & Technology, 2018, 52(7): 4108-4116. |
11 | Peng J, Cao D, He Z, et al. The effect of hydration number on the interfacial transport of sodium ions[J]. Nature, 2018, 557(7707): 701-705. |
12 | Tansel B, Sager J, Garland J, et al. Effect of transmembrane pressure on overall membrane resistance during cross-flow filtration of solutions with high-ionic content[J]. Journal of Membrane Science, 2009, 328(1/2): 205-210. |
13 | Yaroshchuk A E. Dielectric exclusion of ions from membranes[J]. Advances in Colloid and Interface Science, 2000, 85(2/3): 193-230. |
14 | Oatley D L, Llenas L, Aljohani N H M, et al. Investigation of the dielectric properties of nanofiltration membranes[J]. Desalination, 2013, 315: 100-106. |
15 | Yaroshchuk A. Non-steric mechanisms of nanofiltration: superposition of Donnan and dielectric exclusion[J]. Separation and Purification Technology, 2001, 22/23(1/2): 143-158. |
16 | Donnan F G. The theory of membrane equilibria[J]. Chemical Reviews, 1924, 1(1): 73-90. |
17 | Luo T, Abdu S, Wessling M. Selectivity of ion exchange membranes: a review[J]. Journal of Membrane Science, 2018, 555: 429-454. |
18 | Ong S L, Zhou W, Song L, et al. Evaluation of feed concentration effects on salt/ion transport through RO/NF membranes with the nernst-planck-donnan model[J]. Environmental Engineering Science, 2002, 19(6): 429-439. |
19 | Labban O, Liu C, Chong T H, et al. Fundamentals of low-pressure nanofiltration: membrane characterization, modeling, and understanding the multi-ionic interactions in water softening[J]. Journal of Membrane Science, 2017, 521: 18-32. |
20 | Arndt M C, Sadowski G. Thermodynamic model for polyelectrolyte hydrogels[J]. The Journal of Physical Chemistry B, 2014, 118(35): 10534-10542. |
21 | Kamcev J, Paul D R, Freeman B D. Ion activity coefficients in ion exchange polymers: applicability of Manning's counterion condensation theory[J]. Macromolecules, 2015, 48(21): 8011-8024. |
22 | Petropoulos J H, Tsimboukis D G, Kouzeli K. Non-equipotential volume membrane models. Relation between the glueckauf and equipotential surface models[J]. Journal of Membrane Science, 1983, 16: 379-389. |
23 | Kamcev J, Freeman B D. Charged polymer membranes for environmental/energy applications[J]. Annual Review of Chemical And Biomolecular Engineering, 2016, 7: 111-133. |
24 | Bruni L, Bandini S. The role of the electrolyte on the mechanism of charge formation in polyamide nanofiltration membranes[J]. Journal of Membrane Science, 2008, 308(1/2): 136-151. |
25 | Freger V, Srebnik S. Mathematical model of charge and density distributions in interfacial polymerization of thin films[J]. Journal of Applied Polymer Science, 2003, 88(5): 1162-1169. |
26 | Schönhoff M, Ball V, Bausch A R, et al. Hydration and internal properties of polyelectrolyte multilayers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 303(1/2): 14-29. |
27 | de Grooth J, Oborný R, Potreck J, et al. The role of ionic strength and odd-even effects on the properties of polyelectrolyte multilayer nanofiltration membranes[J]. Journal of Membrane Science, 2015, 475: 311-319. |
28 | Wang W, Xu Y, Han H, et al. Odd-even effect during layer-by-layer assembly of polyelectrolytes inspired by marine mussel[J]. Journal of Polymer Science Part B: Polymer Physics, 2017, 55(3): 245-255. |
29 | Luo J, Wan Y. Effects of pH and salt on nanofiltration: a critical review[J]. Journal of Membrane Science, 2013, 438: 18-28. |
30 | Kreuer K-D, Paddison S J, Spohr E, et al. Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology[J]. Chemical Reviews, 2004, 104(10): 4637-4678. |
31 | Paugam L, Diawara C K, Schlumpf J P, et al. Transfer of monovalent anions and nitrates especially through nanofiltration membranes in brackish water conditions[J]. Separation and Purification Technology, 2004, 40(3): 237-242. |
32 | Bouchoux A, Balmann H, Lutin F. Nanofiltration of glucose and sodium lactate solutions variations of retention between single- and mixed-solute solutions[J]. Journal of Membrane Science, 2005, 258(1/2): 123-132. |
33 | Dalwani M, Benes N E, Bargeman G, et al. A method for characterizing membranes during nanofiltration at extreme pH[J]. Journal of Membrane Science, 2010, 363(1/2): 188-194. |
34 | Luo J, Ding L, Wan Y, et al. Fouling behavior of dairy wastewater treatment by nanofiltration under shear-enhanced extreme hydraulic conditions[J]. Separation and Purification Technology, 2012, 88: 79-86. |
35 | Wang J, Mo Y, Mahendra S, et al. Effects of water chemistry on structure and performance of polyamide composite membranes[J]. Journal of Membrane Science, 2014, 452: 415-425. |
36 | Du Y, Lv Y, Qiu W Z, et al. Nanofiltration membranes with narrowed pore size distribution via pore wall modification[J]. Chemical Communications (Cambridge, England), 2016, 52(55): 8589-8592. |
37 | Escoda A, Fievet P, Lakard S, et al. Influence of salts on the rejection of polyethyleneglycol by an NF organic membrane: pore swelling and salting-out effects[J]. Journal of Membrane Science, 2010, 347(1/2): 174-182. |
38 | Zabolotsky V I, Nikonenko V V. Effect of structural membrane inhomogeneity on transport properties[J]. Journal of Membrane Science, 1993, 79(2): 181-198. |
39 | Richards L A, Vuachère M, Schäfer A I. Impact of pH on the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis[J]. Desalination, 2010, 261(3): 331-337. |
40 | Muthukrishnan M, Guha B K. Effect of pH on rejection of hexavalent chromium by nanofiltration[J]. Desalination, 2008, 219(1/2/3): 171-178. |
41 | Werner A, Rieger A, Mosch M, et al. Nanofiltration of indium and germanium ions in aqueous solutions: influence of pH and charge on retention and membrane flux[J]. Separation and Purification Technology, 2018, 194: 319-328. |
42 | Marcus Y. Effect of ions on the structure of water: structure making and breaking[J]. Chemical Reviews, 2009, 109(3): 1346-1370. |
43 | Adamczyk Z, Jamroży K, Batys P, et al. Influence of ionic strength on poly(diallyldimethylammonium chloride) macromolecule conformations in electrolyte solutions[J]. Journal of Colloid and Interface Science, 2014, 435: 182-190. |
44 | Bargeman G, Westerink J B, Manuhutu C F H, et al. The effect of membrane characteristics on nanofiltration membrane performance during processing of practically saturated salt solutions[J]. Journal of Membrane Science, 2015, 485: 112-122. |
45 | 杜娇, 王志, 李旭, 等. 优化聚酰胺分离层制备高选择透过性反渗透膜[J]. 化工学报, 2020, 71(11): 4885-4902. |
Du J, Wang Z. Li X.et al. Optimization of polyamide selective layer for preparation of high permselectivity reverse osmosis membranes[J]. CIESC Journal, 2020, 71(11): 4885-4902. | |
46 | Pages N, Yaroshchuk A, Gibert O, et al. Rejection of trace ionic solutes in nanofiltration: influence of aqueous phase composition[J]. Chemical Engineering Science, 2013, 104(18): 1107-1115. |
47 | Nicolini J V, Borges C P, Ferraz H C. Selective rejection of ions and correlation with surface properties of nanofiltration membranes[J]. Separation and Purification Technology, 2016, 171: 238-247. |
48 | Odian G. Principles of Polymerization[M]. 4th ed. New York: John Wiley & Sons, 2004. |
49 | Zhou C, Shi Y, Sun C, et al. Thin-film composite membranes formed by interfacial polymerization with natural material sericin and trimesoyl chloride for nanofiltration[J]. Journal of Membrane Science, 2014, 471: 381-391. |
50 | Li W, Bian C, Fu C, et al. A poly(amide-co-ester) nanofiltration membrane using monomers of glucose and trimesoyl chloride[J]. Journal of Membrane Science, 2016, 504: 185-195. |
51 | Zhu J, Yuan S, Uliana A, et al. High-flux thin film composite membranes for nanofiltration mediated by a rapid co-deposition of polydopamine/piperazine[J]. Journal of Membrane Science, 2018, 554: 97-108. |
52 | Li X, Wang R, Wicaksana F, et al. Preparation of high performance nanofiltration (NF) membranes incorporated with aquaporin Z[J]. Journal of Membrane Science, 2014, 450: 181-188. |
53 | Guo M, Wang S, Gu K, et al. Gradient cross-linked structure: towards superior PVA nanofiltration membrane performance[J]. Journal of Membrane Science, 2019, 569: 83-90. |
54 | Harris J J, Stair J L, Bruening M L. Layered polyelectrolyte films as selective, ultrathin barriers for anion transport[J]. Chemistry of Materials, 2000, 12(7): 1941-1946. |
55 | Hong S U, Malaisamy R, Bruening M L. Separation of fluoride from other monovalent anions using multilayer polyelectrolyte nanofiltration membranes[J]. Langmuir, 2007, 23(4): 1716-1722. |
56 | Ahmadiannamini P, Li X, Goyens W, et al. Multilayered PEC nanofiltration membranes based on SPEEK/PDDA for anion separation[J]. Journal of Membrane Science, 2010, 360(1/2): 250-258. |
57 | Ouyang L, Malaisamy R, Bruening M L. Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations[J]. Journal of Membrane Science, 2008, 310(1/2): 76-84. |
58 | Ng L Y, Mohammad A W, Ng C Y, et al. Development of nanofiltration membrane with high salt selectivity and performance stability using polyelectrolyte multilayers[J]. Desalination, 2014, 351: 19-26. |
59 | Gao S, Zhu Y, Gong Y, et al. Ultrathin polyamide nanofiltration membrane fabricated on brush-painted single-walled carbon nanotube network support for ion sieving[J]. ACS Nano, 2019, 13(5): 5278-5290. |
60 | Wang Z, Fang W, Zhang F, et al. Ultrathin nanofiltration membrane from confined polymerization within the nanowire network for high efficiency divalent cation removal[J]. ACS Macro Letters, 2019, 8(10): 1240-1246. |
61 | Zhu X, Cheng X, Luo X, et al. Ultrathin thin-film composite polyamide membranes constructed on hydrophilic poly(vinyl alcohol) decorated support toward enhanced nanofiltration performance[J]. Environmental Science & Technology, 2020, 54(10): 6365-6374. |
62 | Hu R, He Y, Zhang C, et al. Graphene oxide-embedded polyamide nanofiltration membranes for selective ion separation[J]. Journal of Materials Chemistry A, 2017, 5(48): 25632-25640. |
63 | Zheng J, Li M, Yao Y, et al. Zwitterionic carbon nanotube assisted thin-film nanocomposite membranes with excellent efficiency for separation of mono/divalent ions from brackish water[J]. Journal of Materials Chemistry A, 2017, 5(26): 13730-13739. |
64 | O'Hern S C, Boutilier M S H, Idrobo J C, et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes[J]. Nano Letters, 2014, 14(3): 1234-1241. |
65 | Han Y, Jiang Y, Gao C. High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes[J]. ACS Applied Materials & Interfaces, 2015, 7(15): 8147-8155. |
66 | Liang Y, Zhu Y, Liu C, et al. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation[J]. Nature Communications, 2020, 11(1): 1-9. |
67 | Huang B Q, Tang Y J, Zeng Z X, et al. Microwave heating assistant preparation of high permselectivity polypiperazine-amide nanofiltration membrane during the interfacial polymerization process with low monomer concentration[J]. Journal of Membrane Science, 2020, 596: 117718. |
68 | Du Y, Qiu W Z, Lv Y, et al. Nanofiltration membranes with narrow pore size distribution via contra-diffusion-induced mussel-inspired chemistry[J]. ACS Applied Materials & Interfaces, 2016, 8(43): 29696-29704. |
69 | Zhao F Y, An Q F, Ji Y L, et al. A novel type of polyelectrolyte complex/MWCNT hybrid nanofiltration membranes for water softening[J]. Journal of Membrane Science, 2015, 492: 412-421. |
70 | Xu W L, Fang C, Zhou F, et al. Self-assembly: a facile way of forming ultrathin, high-performance graphene oxide membranes for water purification[J]. Nano Letters, 2017, 17(5): 2928-2933. |
71 | Li W, Wu W, Li Z. Controlling interlayer spacing of graphene oxide membranes by external pressure regulation[J]. ACS Nano, 2018, 12(9): 9309-9317. |
72 | Chiang Y C, Hsub Y Z, Ruaan R C, et al. Nanofiltration membranes synthesized from hyperbranched polyethyleneimine[J]. Journal of Membrane Science, 2009, 326(1): 19-26. |
73 | Wei X Z, Hong J L, Zhu S S, et al. Structure-performance study of polyamide composite nanofiltration membranes prepared with polyethyleneimine[J]. Journal of Materials Science, 2017, 52(19): 11701-11714. |
74 | Li X L, Zhu L P, Xu Y Y, et al. A novel positively charged nanofiltration membrane prepared from N,N-dimethylaminoethyl methacrylate by quaternization cross-linking[J]. Journal of Membrane Science, 2011, 374(1): 33-42. |
75 | Cui Y, Yao Z-K, Zheng K, et al. Positively-charged nanofiltration membrane formed by quaternization and cross-linking of blend PVC/P(DMA-co-MMA) precursors[J]. Journal of Membrane Science, 2015, 492: 187-196. |
76 | Cheng W, Liu C, Tong T, et al. Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: role of polyelectrolyte charge, ion size, and ionic strength[J]. Journal of Membrane Science, 2018, 559: 98-106. |
77 | Thuo M M, Reus W F, Nijhuis C A, et al. Odd-even effects in charge transport across self-assembled monolayers[J]. Journal of the American Chemical Society, 2011, 133(9): 2962-2975. |
78 | Duran F E, Dunkelberger G W. A comparison of membrane softening on three South Florida groundwaters[J]. Desalination, 1995, 102(1): 27-34. |
79 | Liu C, Shi L, Wang R. Crosslinked layer-by-layer polyelectrolyte nanofiltration hollow fiber membrane for low-pressure water softening with the presence of SO42- in feed water[J]. Journal of Membrane Science, 2015, 486: 169-176. |
80 | An Q F, Sun W D, Zhao Q, et al. Study on a novel nanofiltration membrane prepared by interfacial polymerization with zwitterionic amine monomers[J]. Journal of Membrane Science, 2013, 431: 171-179. |
81 | Qiu W Z, Lv Y, Du Y, et al. Composite nanofiltration membranes via the co-deposition and cross-linking of catechol/polyethylenimine[J]. RSC Advances, 2016, 6(41): 34096-34102. |
82 | Zhang R, Su Y, Zhao X, et al. A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine)[J]. Journal of Membrane Science, 2014, 470: 9-17. |
83 | Li Y, Su Y, Dong Y, et al. Separation performance of thin-film composite nanofiltration membrane through interfacial polymerization using different amine monomers[J]. Desalination, 2014, 333(1): 59-65. |
84 | Swain B. Recovery and recycling of lithium: a review[J]. Separation and Purification Technology, 2017, 172: 388-403. |
85 | 马哲, 李建武. 中国锂资源供应体系研究: 现状、问题与建议[J]. 中国矿业, 2018, 27(10): 1-7. |
Ma Z, Li J W. Analysis of China's lithium resources supply system: status, issues and suggestions[J]. China Mining Magazine, 2018, 27(10): 1-7. | |
86 | 崔晓林. 中国锂矿资源需求预测及供需分析[D]. 北京: 中国地质大学(北京), 2017. |
Cui X L. Demand projection of lithium resource and its demand & supply analysis in China[D]. Beijing: China University of Geosciences(Beijing), 2017. | |
87 | 全国矿产资源规划(2016—2020年)[Z]. 北京: 中华人民共和国自然资源部, 2016. |
National Mineral Resources Planning (2016—2020) [Z]. Beijing: Ministry of Natural Resources of the People's Republic of China, 2016. | |
88 | Liu X, Zhong M, Chen X, et al. Separating lithium and magnesium in brine by aluminum-based materials[J]. Hydrometallurgy, 2018, 176: 73-77. |
89 | Jiang C, Zhang D, Muhammad A S, et al. Fouling deposition as an effective approach for preparing monovalent selective membranes[J]. Journal of Membrane Science, 2019, 580: 327-335. |
90 | Li X, Mo Y, Qing W, et al. Membrane-based technologies for lithium recovery from water lithium resources: a review[J]. Journal of Membrane Science, 2019, 591: 117317. |
91 | 李正山. 青海锂矿资源可持续开发路径研究[D]. 北京: 中国地质大学(北京), 2017. |
Li Z S. Study of Qinghai lithium mineral resources sustainable development path [D]. Beijing: China University of Geosciences(Beijing), 2017. | |
92 | 邢红, 王肖虎, 毛新宇. 膜法盐湖卤水提锂工艺研究[J]. 盐业与化工, 2016, 45(1): 24-26. |
Xing H, Wang X H, Mao X Y. Lithium technology research of salt lake brine by membrane[J]. Journal of Salt and Chemical Industry, 2016, 45(1): 24-26. | |
93 | Li Y, Zhao Y, Wang H, et al. The application of nanofiltration membrane for recovering lithium from salt lake brine[J]. Desalination, 2019, 468: 114081. |
94 | 康为清. 纳滤法应用于盐湖卤水镁锂分离的研究[D]. 西宁: 中国科学院研究生院(青海盐湖研究所), 2014. |
Kang W Q. Study on the Mg2+/Li+ separation in salt lake brine by nanofiltration[D]. Xining: The University of Chinese Academy of Sciences (Qinghai Institute of Salt Lakes), 2014. | |
95 | Bi Q, Xu S. Separation of magnesium and lithium from brine with high Mg2+/Li+ ratio by a two-stage nanofiltration process[J]. Desalination and Water Treatment, 2018, 129: 94-100. |
96 | Wen X, Ma P, Zhu C, et al. Preliminary study on recovering lithium chloride from lithium-containing waters by nanofiltration[J]. Separation and Purification Technology, 2006, 49(3): 230-236. |
97 | Sun S Y, Cai L J, Nie X Y, et al. Separation of magnesium and lithium from brine using a Desal nanofiltration membrane[J]. Journal of Water Process Engineering, 2015, 7: 210-217. |
98 | Yang G, Shi H, Liu W, et al. Investigation of Mg2+/Li+ separation by nanofiltration[J]. Chinese Journal of Chemical Engineering, 2011, 19(4): 586-591. |
99 | Li X, Zhang C, Zhang S, et al. Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation[J]. Desalination, 2015, 369: 26-36. |
100 | Zhang H-Z, Xu Z-L, Ding H, et al. Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+ and Li+[J]. Desalination, 2017, 420: 158-166. |
101 | Somrani A, Hamzaoui A H, Pontie M. Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO)[J]. Desalination, 2013, 317: 184-192. |
102 | 张乃慧. 引入更多的膜分离装置推动氯碱工业技术进步[J]. 中国氯碱, 2004, (10): 7-9. |
Zhang N H. Much more membrane separation units for improving technical advancement of chlor-alkali industry[J]. China Chlor-Alkali, 2004, (10): 7-9. | |
103 | 欧晓梅. 膜法除硝工艺的优化与改造[D]. 北京: 北京化工大学, 2015. |
Ou X M. Membrane denitration process optimization and transformation[D]. Beijing: Beijing University of Chemical Technology, 2015. | |
104 | 付军凤. 纳滤膜法除硫酸根技术进展[J]. 氯碱工业, 2009, 45(1): 7-10. |
Fu J F. Technical progress of sulfate removing by nanofiltration membrane method[J]. Chlor-Alkali Industry, 2009, 45(1): 7-10. | |
105 | 宋华福, 薄振海, 曲泽钊. 膜法脱硝装置运行总结[J]. 氯碱工业, 2010, 46(6): 11-12. |
Song H F, Bo Z H, Qu Z Z. Summary on running of sulfate removing device by membrane method[J]. Chlor-Alkali Industry, 2010, 46(6): 11-12. | |
106 | Madaeni S, Kazemi V. Treatment of saturated brine in chlor-alkali process using membranes[J]. Separation and Purification Technology, 2008, 61(1): 68-74. |
107 | Tong T, Elimelech M. The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions[J]. Environmental Science & Technology, 2016, 50(13): 6846-6855. |
108 | Miller D J, Huang X, Li H, et al. Fouling-resistant membranes for the treatment of flowback water from hydraulic shale fracturing: a pilot study[J]. Journal of Membrane Science, 2013, 437: 265-275. |
109 | Ahmed M, Arakel A, Hoey D, et al. Feasibility of salt production from inland RO desalination plant reject brine: a case study[J]. Desalination, 2003, 158(1/2/3): 109-117. |
110 | Zhou T, Lim T T, Chin S S, et al. Treatment of organics in reverse osmosis concentrate from a municipal wastewater reclamation plant: feasibility test of advanced oxidation processes with/without pretreatment[J]. Chemical Engineering Journal, 2011, 166(3): 932-939. |
111 | Pérez-González A, Ibáñez R, Gómez P, et al. Nanofiltration separation of polyvalent and monovalent anions in desalination brines[J]. Journal of Membrane Science, 2015, 473: 16-27. |
112 | Yan Z Q, Zeng L M, Li Q, et al. Selective separation of chloride and sulfate by nanofiltration for high saline wastewater recycling[J]. Separation and Purification Technology, 2016, 166: 135-141. |
113 | Xiong R, Wei C. Current status and technology trends of zero liquid discharge at coal chemical industry in China[J]. Journal of Water Process Engineering, 2017, 19: 346-351. |
114 | 熊日华, 何灿, 马瑞, 等. 高盐废水分盐结晶工艺及其技术经济分析[J]. 煤炭科学技术, 2018, 46(9): 37-43. |
Xiong R H, He C, Ma R, et al. Process introduction and techno-economic analysis on pure salt recovery crystallization for high salinity wastewater[J]. Coal Science and Technology, 2018, 46(9): 37-43. | |
115 | 蒋路漫, 周振, 田小测, 等. 电厂烟气脱硫废水零排放工艺中试研究[J]. 热力发电, 2019, 48(1): 103-109. |
Jiang L M, Zhou Z, Tian X C, et al. Pilot-scale study on zero liquid discharge technology of flue gas desulfurization wastewater in coal-fired power plants[J]. Thermal Power Generation, 2019, 48(1): 103-109. | |
116 | Muhammad Y, Lee W. Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: a review[J]. The Science of the Total Environment, 2019, 681: 551-563. |
117 | Shahmansouri A, Min J, Jin L, et al. Feasibility of extracting valuable minerals from desalination concentrate: a comprehensive literature review[J]. Journal of Cleaner Production, 2015, 100: 4-16. |
118 | Kim D H. A review of desalting process techniques and economic analysis of the recovery of salts from retentates[J]. Desalination, 2011, 270(1/2/3): 1-8. |
119 | 贾萌, 杨郭, 袁基刚, 等. 膜组合工艺处理工业园区含盐废水中试研究[J]. 中国给水排水, 2018, 34(11): 84-87. |
Jia M, Yang G, Yuan J G, et al. Pilot-scale treatment of salty wastewater from industrial parks by membrane combination process[J]. China Water & Wastewater, 2018, 34(11): 84-87. | |
120 | Kılıc Ö, Kılıc A M. Recovery of salt co-products during the salt production from brine[J]. Desalination, 2005, 186(1/2/3): 11-19. |
121 | Krieg H M, Modise S J, Keizer K, et al. Salt rejection in nanofiltration for single and binary salt mixtures in view of sulphate removal[J]. Desalination, 2005, 171(2): 205-215. |
122 | Park S J, Choi W, Nam S E, et al. Fabrication of polyamide thin film composite reverse osmosis membranes via support-free interfacial polymerization[J]. Journal of Membrane Science, 2017, 526: 52-59. |
123 | van der Bruggen B, Koninckx A, Vandecasteele C. Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration[J]. Water Research, 2004, 38(5): 1347-1353. |
124 | Meschke K, Hansen N, Hofmann R, et al. Characterization and performance evaluation of polymeric nanofiltration membranes for the separation of strategic elements from aqueous solutions[J]. Journal of Membrane Science, 2018, 546: 246-257. |
125 | Fang J, Deng B. Arsenic rejection by nanofiltration membranes: effect of operating parameters and model analysis[J]. Environmental Engineering Science, 2014, 31(9): 496-506. |
126 | Schaep J, van der Bruggen B, Vandecasteele C, et al. Influence of ion size and charge in nanofiltration[J]. Separation and Purification Technology, 1998, 14(1/2/3): 155-162. |
127 | Wang Z, Liu G, Fan Z, et al. Experimental study on treatment of electroplating wastewater by nanofiltration[J]. Journal of Membrane Science, 2007, 305(1/2): 185-195. |
128 | Mazzoni C, Bandini S. On nanofiltration Desal-5 DK performances with calcium chloride-water solutions[J]. Separation and Purification Technology, 2006, 52(2): 232-240. |
129 | Ben Amar N, Saidani H, Palmeri J, et al. Effect of temperature on the rejection of neutral and charged solutes by Desal 5 DK nanofiltration membrane[J]. Desalination, 2009, 246(1/2/3): 294-303. |
130 | Pérez L, Escudero I, Arcos-Martínez M J, et al. Application of the solution-diffusion-film model for the transfer of electrolytes and uncharged compounds in a nanofiltration membrane[J]. Journal of Industrial and Engineering Chemistry, 2017, 47: 368-374. |
131 | Hong S U, Malaisamy R, Bruening M L. Optimization of flux and selectivity in Cl-/SO42- separations with multilayer polyelectrolyte membranes[J]. Journal of Membrane Science, 2006, 283(1/2): 366-372. |
132 | Zhang R, Yu S, Shi W, et al. A novel polyesteramide thin film composite nanofiltration membrane prepared by interfacial polymerization of serinol and trimesoyl chloride (TMC) catalyzed by 4‑dimethylaminopyridine (DMAP)[J]. Journal of Membrane Science, 2017, 542: 68-80. |
133 | Ren D, Bi X T, Liu T Y, et al. Oligo-ethylene-glycol based thin-film composite nanofiltration membranes for effective separation of mono-/di-valent anions[J]. Journal of Materials Chemistry A, 2019, 7(4): 1849-1860. |
134 | Safwat S M, Matta M E. Performance evaluation of electrocoagulation process using zinc electrodes for removal of urea[J]. Separation Science and Technology, 2020, 55(14): 2500-2509. |
135 | Fang W, Shi L, Wang R. Interfacially polymerized composite nanofiltration hollow fiber membranes for low-pressure water softening[J]. Journal of Membrane Science, 2013, 430: 129-139. |
136 | González-Muñoz M J, Rodríguez M A, Luque S, et al. Recovery of heavy metals from metal industry waste waters by chemical precipitation and nanofiltration[J]. Desalination, 2006, 200(1/2/3): 742-744. |
137 | Gherasim C-V, Cuhorka J, Mikulášek P. Analysis of lead(Ⅱ) retention from single salt and binary aqueous solutions by a polyamide nanofiltration membrane: Experimental results and modelling[J]. Journal of Membrane Science, 2013, 436: 132-144. |
138 | Jadhav S V, Marathe K V, Rathod V K. A pilot scale concurrent removal of fluoride, arsenic, sulfate and nitrate by using nanofiltration: competing ion interaction and modelling approach[J]. Journal of Water Process Engineering, 2016, 13: 153-167. |
139 | Sen M, Manna A, Pal P. Removal of arsenic from contaminated groundwater by membrane-integrated hybrid treatment system[J]. Journal of Membrane Science, 2010, 354(1/2): 108-113. |
140 | Pal P, Chakrabortty S, Linnanen L. A nanofiltration-coagulation integrated system for separation and stabilization of arsenic from groundwater[J]. Science of the Total Environment, 2014, 476/477: 601-610. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[4] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[8] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[9] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[10] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[11] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[12] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
[13] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
[14] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[15] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||