1 |
王小艺, 唐丽娜, 刘载文, 等. 城市湖库蓝藻水华形成机理[J]. 化工学报, 2012, 63(5): 1492-1497.
|
|
Wang X Y, Tang L N, Liu Z W, et al. Formation mechanism of cyanobacteria bloom in urban lake reservoir[J]. CIESC Journal, 2012, 63(5): 1492-1497.
|
2 |
Paerl H W, Otten T G. Blooms bite the hand that feeds them[J]. Science, 2013, 342(6157): 433-434.
|
3 |
Terin U C, Sabogal-Paz L P. Microcystis aeruginosa and microcystin-LR removal by household slow sand filters operating in continuous and intermittent flows[J]. Water Research, 2019, 150: 29-39.
|
4 |
Svirčev Z, Drobac D, Tokodi N, et al. Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins[J]. Archives of Toxicology, 2017, 91(2): 621-650.
|
5 |
Zhu X Y, Shen Y T, Chen X G, et al. Biodegradation mechanism of microcystin-LR by a novel isolate of Rhizobium sp. TH and the evolutionary origin of the mlrA gene[J]. International Biodeterioration & Biodegradation, 2016, 115: 17-25.
|
6 |
Bourne D G, Riddles P, Jones G J, et al. Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR[J]. Environmental Toxicology, 2001, 16(6): 523-534.
|
7 |
Bourne D G, Jones G J, Blakeley R L, et al. Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR[J]. Applied and Environmental Microbiology, 1996, 62(11): 4086-4094.
|
8 |
Dziga D, Lisznianska M, Wladyka B. Bioreactor study employing bacteria with enhanced activity toward cyanobacterial toxins microcystins[J]. Toxins, 2014, 6(8): 2379-2392.
|
9 |
Dexter J, Dziga D, Lv J, et al. Heterologous expression of mlrA in a photoautotrophic host-engineering cyanobacteria to degrade microcystins[J]. Environmental Pollution, 2018, 237: 926-935.
|
10 |
姜恬, 冯旭东, 李岩, 等. 底物特异性的生物催化与酶设计改造[J]. 化工进展, 2019, 38(1): 606-614.
|
|
Jiang T, Feng X D, Li Y, et al. The biocatalysis and enzyme modification of substrate specificity[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 606-614.
|
11 |
冯旭东, 吕波, 李春. 酶分子稳定性改造研究进展[J]. 化工学报, 2016, 67(1): 277-284.
|
|
Feng X D, Lyu B, Li C. Advances in enzyme stability modification[J]. CIESC Journal, 2016, 67(1): 277-284.
|
12 |
孙建华, 戴荣继, 邓玉林. 酶固定化技术研究进展[J]. 化工进展, 2010, 29(4): 715-721.
|
|
Sun J H, Dai R J, Deng Y L. Progress in enzyme immobilization technique[J]. Chemical Industry and Engineering Progress, 2010, 29(4): 715-721.
|
13 |
Söding J, Biegert A, Lupas A N. The HHpred interactive server for protein homology detection and structure prediction[J]. Nucleic Acids Research, 2005, 33(s2): W244-W248.
|
14 |
Lobley A, Sadowski M I, Jones D T. pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination[J]. Bioinformatics, 2009, 25(14): 1761-1767.
|
15 |
Kelley L A, Mezulis S, Yates C M, et al. The Phyre2 web portal for protein modeling, prediction and analysis[J]. Nature Protocols, 2015, 10(6): 845-858.
|
16 |
Yang Y, Faraggi E, Zhao H, et al. Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates[J]. Bioinformatics, 2011, 27(15): 2076-2082.
|
17 |
Zheng W, Wuyun Q, Li Y, et al. Detecting distant-homology protein structures by aligning deep neural-network based contact maps[J]. PLoS Computational Biology, 2019, 15(10): e1007411.
|
18 |
Melo F, Sali A. Fold assessment for comparative protein structure modeling[J]. Protein Science, 2007, 16(11): 2412-2426.
|
19 |
Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score[J]. Nucleic Acids Research, 2005, 33(7): 2302-2309.
|
20 |
Laskowski R A, Macarthur M W, Moss D S, et al. PROCHECK: a program to check the stereochemical quality of protein structures[J]. Journal of Applied Crystallography, 1993, 26(2): 283-291.
|
21 |
Wiederstein M, Sippl M J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins[J]. Nucleic Acids Research, 2007, 35(s2): W407-W410.
|
22 |
Colovos C, Yeates T O. Verification of protein structures: patterns of nonbonded atomic interactions[J]. Protein Science, 1993, 2(9): 1511-1519.
|
23 |
Morris G M, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility[J]. Journal of Computational Chemistry, 2009, 30(16): 2785-2791.
|
24 |
Yan H, Wang H S, Wang J F, et al. Cloning and expression of the first gene for biodegrading microcystin LR by Sphingopyxis sp. USTB-05[J]. Journal of Environmental Sciences, 2012, 24(10): 1816-1822.
|
25 |
Dziga D, Wladyka B, Zielińska G, et al. Heterologous expression and characterisation of microcystinase[J]. Toxicon, 2012, 59(5): 578-586.
|
26 |
Pei J, Mitchell D A, Dixon J E, et al. Expansion of type Ⅱ CAAX proteases reveals evolutionary origin of γ-secretase subunit APH-1[J]. Journal of Molecular Biology, 2011, 410(1): 18-26.
|
27 |
Manolaridis I, Kulkarni K, Dodd R B, et al. Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1[J]. Nature, 2013, 504(7479): 301-305.
|
28 |
Hampton S E, Dore T M, Schmidt W K. Rce1: mechanism and inhibition[J]. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53(2): 157-174.
|
29 |
Khor B Y, Tye G J, Lim T S, et al. General overview on structure prediction of twilight-zone proteins[J]. Theoretical Biology and Medical Modelling, 2015, 12(1): 15-25.
|
30 |
Schoonman M J L, Knegtel R M A, Grootenhuis P D J. Practical evaluation of comparative modelling and threading methods[J]. Computers & Chemistry, 1998, 22(5): 369-375.
|
31 |
Geralt M, Alimenti C, Vallesi A, et al. Thermodynamic stability of psychrophilic and mesophilic pheromones of the protozoan ciliate Euplotes[J]. Biology, 2013, 2(1): 142-150.
|
32 |
Dalal V, Kumar P, Rakhaminov G, et al. Repurposing an ancient protein core structure: structural studies on FmtA, a novel esterase of Staphylococcus aureus[J]. Journal of Molecular Biology, 2019, 431(17): 3107-3123.
|
33 |
Buller A R, Townsend C A. Intrinsic evolutionary constraints on protease structure, enzyme acylation, and the identity of the catalytic triad[J]. Proceedings of the National Academy of Sciences, 2013, 110(8): E653-E661.
|
34 |
Plummer L J, Hildebrandt E R, Porter S B, et al. Mutational analysis of the Ras converting enzyme reveals a requirement for glutamate and histidine residues[J]. Journal of Biological Chemistry, 2006, 281(8): 4596-4605.
|
35 |
Dolence J M, Steward L E, Dolence E K, et al. Studies with recombinant Saccharomyces cerevisiae CaaX prenyl protease Rce1p[J]. Biochemistry, 2000, 39(14): 4096-4104.
|
36 |
Carvajal N, Orellana M S, Bórquez J, et al. Non-chelating inhibition of the H101N variant of human liver arginase by EDTA[J]. Journal of Inorganic Biochemistry, 2004, 98(8): 1465-1469.
|
37 |
Lopata A, Jójárt B, Surányi E V, et al. Beyond chelation: EDTA tightly binds Taq DNA polymerase, MutT and dUTPase and directly inhibits dNTPase activity[J]. Biomolecules, 2019, 9(10): 621-639.
|