化工学报 ›› 2021, Vol. 72 ›› Issue (4): 1975-1986.DOI: 10.11949/0438-1157.20201151
收稿日期:
2020-08-11
修回日期:
2020-09-17
出版日期:
2021-04-05
发布日期:
2021-04-05
通讯作者:
杨锋苓
作者简介:
杨锋苓(1979—),男,博士,副教授,基金资助:
YANG Fengling1,2,3(),CAO Mingjian4,ZHANG Cuixun4,LIU Xin1
Received:
2020-08-11
Revised:
2020-09-17
Online:
2021-04-05
Published:
2021-04-05
Contact:
YANG Fengling
摘要:
采用数值模拟的方法分析了课题组前期开发的实验室规模的柔性叶片Rushton搅拌桨的振动特性,并采用丹麦的Brüel & Kj?r及中国的东华振动测试仪进行了实验研究。结果表明,桨轴系统的第1~6阶振型为弯曲型,第7~12阶振型为扭转型。模拟得到的固有频率与实验结果吻合较好,均表明存在集聚现象;与干模态固有频率相比,湿模态固有频率有所降低。承受高频交变激励载荷时,桨轴系统存在明显的应力和应变谐响应。桨轴系统的固有频率随转速的增大而减小,随介质黏度的增大而增大。研究结果为柔性叶片Rushton搅拌桨的放大设计及工业应用奠定了基础。
中图分类号:
杨锋苓, 曹明见, 张翠勋, 刘欣. 柔性Rushton搅拌桨的振动特性[J]. 化工学报, 2021, 72(4): 1975-1986.
YANG Fengling, CAO Mingjian, ZHANG Cuixun, LIU Xin. Vibration characteristics of the flexible-blade Rushton impeller[J]. CIESC Journal, 2021, 72(4): 1975-1986.
搅拌 介质 | 密度ρ/ (kg·m-3) | 黏度μ/ (Pa·s) | 转速N/ s-1 | Reynolds数 (Re=ρNd2/μ) |
---|---|---|---|---|
水 | 998.20 | 0.001 | 1~5 | 22500~112500 |
70%甘油 | 1183.77 | 0.023 | 2 | 2367 |
80%甘油 | 1210.28 | 0.060 | 2 | 906 |
90%甘油 | 1236.79 | 0.219 | 2 | 254 |
100%甘油 | 1263.30 | 1.412 | 2 | 40 |
表1 流体物性参数及搅拌桨转速和Reynolds数
Table 1 Fluid physical parameters, impeller rotational speed and Reynolds number
搅拌 介质 | 密度ρ/ (kg·m-3) | 黏度μ/ (Pa·s) | 转速N/ s-1 | Reynolds数 (Re=ρNd2/μ) |
---|---|---|---|---|
水 | 998.20 | 0.001 | 1~5 | 22500~112500 |
70%甘油 | 1183.77 | 0.023 | 2 | 2367 |
80%甘油 | 1210.28 | 0.060 | 2 | 906 |
90%甘油 | 1236.79 | 0.219 | 2 | 254 |
100%甘油 | 1263.30 | 1.412 | 2 | 40 |
网格密度 | 网格尺寸 | 网格数量/个 | 网格质量 | |
---|---|---|---|---|
静子 | 转子 | |||
coarse | 5 | 4 | 458811 | 0.86 |
medium | 4 | 3 | 950124 | 0.89 |
fine | 3.8 | 2.8 | 1142299 | 0.89 |
表2 流体域网格
Table 2 Grids of the fluid zones
网格密度 | 网格尺寸 | 网格数量/个 | 网格质量 | |
---|---|---|---|---|
静子 | 转子 | |||
coarse | 5 | 4 | 458811 | 0.86 |
medium | 4 | 3 | 950124 | 0.89 |
fine | 3.8 | 2.8 | 1142299 | 0.89 |
阶数 | 干模态频率/Hz | 湿模态频率/Hz | 下降比例/% |
---|---|---|---|
1 | 24.811 | 24.210 | 2.42 |
2 | 24.811 | 24.211 | 2.42 |
3 | 24.811 | 24.218 | 2.39 |
4 | 24.812 | 24.232 | 2.34 |
5 | 24.812 | 24.244 | 2.29 |
6 | 24.812 | 24.253 | 2.25 |
7 | 84.536 | 82.707 | 2.16 |
8 | 84.536 | 82.720 | 2.15 |
9 | 84.536 | 82.742 | 2.12 |
10 | 84.536 | 82.745 | 2.12 |
11 | 84.536 | 82.771 | 2.09 |
12 | 84.537 | 82.804 | 2.05 |
13 | 150.280 | 149.580 | 0.47 |
14 | 150.280 | 149.600 | 0.45 |
15 | 150.380 | 149.690 | 0.46 |
16 | 150.420 | 149.730 | 0.46 |
17 | 150.420 | 149.730 | 0.46 |
18 | 150.420 | 149.750 | 0.45 |
19 | 189.540 | 189.500 | 0.02 |
20 | 189.540 | 189.500 | 0.02 |
21 | 190.050 | 190.010 | 0.02 |
22 | 190.290 | 190.250 | 0.02 |
23 | 190.290 | 190.250 | 0.02 |
24 | 190.590 | 190.560 | 0.02 |
表3 桨轴系统干模态和湿模态固有频率的模拟结果
Table 3 The numerically obtained dry-modal and wet-modal natural frequency of the shaft and impeller
阶数 | 干模态频率/Hz | 湿模态频率/Hz | 下降比例/% |
---|---|---|---|
1 | 24.811 | 24.210 | 2.42 |
2 | 24.811 | 24.211 | 2.42 |
3 | 24.811 | 24.218 | 2.39 |
4 | 24.812 | 24.232 | 2.34 |
5 | 24.812 | 24.244 | 2.29 |
6 | 24.812 | 24.253 | 2.25 |
7 | 84.536 | 82.707 | 2.16 |
8 | 84.536 | 82.720 | 2.15 |
9 | 84.536 | 82.742 | 2.12 |
10 | 84.536 | 82.745 | 2.12 |
11 | 84.536 | 82.771 | 2.09 |
12 | 84.537 | 82.804 | 2.05 |
13 | 150.280 | 149.580 | 0.47 |
14 | 150.280 | 149.600 | 0.45 |
15 | 150.380 | 149.690 | 0.46 |
16 | 150.420 | 149.730 | 0.46 |
17 | 150.420 | 149.730 | 0.46 |
18 | 150.420 | 149.750 | 0.45 |
19 | 189.540 | 189.500 | 0.02 |
20 | 189.540 | 189.500 | 0.02 |
21 | 190.050 | 190.010 | 0.02 |
22 | 190.290 | 190.250 | 0.02 |
23 | 190.290 | 190.250 | 0.02 |
24 | 190.590 | 190.560 | 0.02 |
阶数 | 实验结果/Hz | 仿真结果/Hz | 偏差 |
---|---|---|---|
1 | 24.000 | 24.811 | 3.38% |
2 | 24.000 | 24.811 | |
3 | 24.000 | 24.811 | |
4 | 24.000 | 24.812 | |
5 | 24.000 | 24.812 | |
6 | 24.000 | 24.812 | |
7 | 82.000 | 84.536 | 3.09% |
8 | 82.000 | 84.536 | |
9 | 82.000 | 84.536 | |
10 | 82.000 | 84.536 | |
11 | 82.000 | 84.536 | |
12 | 82.000 | 84.537 |
表4 干模态固有频率的实验及模拟结果对比
Table 4 Comparison between the experimental and numerical results of the dry-modal natural frequencies
阶数 | 实验结果/Hz | 仿真结果/Hz | 偏差 |
---|---|---|---|
1 | 24.000 | 24.811 | 3.38% |
2 | 24.000 | 24.811 | |
3 | 24.000 | 24.811 | |
4 | 24.000 | 24.812 | |
5 | 24.000 | 24.812 | |
6 | 24.000 | 24.812 | |
7 | 82.000 | 84.536 | 3.09% |
8 | 82.000 | 84.536 | |
9 | 82.000 | 84.536 | |
10 | 82.000 | 84.536 | |
11 | 82.000 | 84.536 | |
12 | 82.000 | 84.537 |
阶数 | 实验结果/Hz | 仿真结果/Hz | 偏差/% |
---|---|---|---|
1 | 23.750 | 24.210 | 1.94 |
2 | 23.750 | 24.211 | 1.94 |
3 | 23.750 | 24.218 | 1.97 |
4 | 23.750 | 24.232 | 2.03 |
5 | 23.750 | 24.244 | 2.08 |
6 | 23.750 | 24.253 | 2.12 |
7 | 78.750 | 82.707 | 5.02 |
8 | 78.750 | 82.720 | 5.04 |
9 | 78.750 | 82.742 | 5.07 |
10 | 78.750 | 82.745 | 5.07 |
11 | 78.750 | 82.771 | 5.11 |
12 | 78.750 | 82.804 | 5.15 |
表5 湿模态固有频率的实验及模拟结果对比
Table 5 Comparison between the experimental and numerical results of the wet-modal natural frequencies
阶数 | 实验结果/Hz | 仿真结果/Hz | 偏差/% |
---|---|---|---|
1 | 23.750 | 24.210 | 1.94 |
2 | 23.750 | 24.211 | 1.94 |
3 | 23.750 | 24.218 | 1.97 |
4 | 23.750 | 24.232 | 2.03 |
5 | 23.750 | 24.244 | 2.08 |
6 | 23.750 | 24.253 | 2.12 |
7 | 78.750 | 82.707 | 5.02 |
8 | 78.750 | 82.720 | 5.04 |
9 | 78.750 | 82.742 | 5.07 |
10 | 78.750 | 82.745 | 5.07 |
11 | 78.750 | 82.771 | 5.11 |
12 | 78.750 | 82.804 | 5.15 |
阶数 | 频率/Hz | |||
---|---|---|---|---|
1 s-1 | 3 s-1 | 4 s-1 | 5 s-1 | |
1 | 24.758 | 22.584 | 18.971 | 11.073 |
2 | 24.762 | 22.604 | 19.157 | 11.745 |
3 | 24.765 | 22.625 | 19.167 | 11.917 |
4 | 24.767 | 22.651 | 19.239 | 12.079 |
5 | 24.767 | 22.714 | 19.325 | 12.296 |
6 | 24.770 | 22.766 | 19.531 | 12.453 |
7 | 84.324 | 78.317 | 69.234 | 52.678 |
8 | 84.332 | 78.367 | 69.486 | 53.441 |
9 | 84.335 | 78.367 | 69.522 | 53.457 |
10 | 84.340 | 78.435 | 69.578 | 53.684 |
11 | 84.342 | 78.547 | 69.750 | 53.973 |
12 | 84.350 | 78.671 | 70.154 | 54.516 |
表6 不同转速时桨轴系统的固有频率
Table 6 Natural frequencies of the shaft and impeller system at different rotational speeds
阶数 | 频率/Hz | |||
---|---|---|---|---|
1 s-1 | 3 s-1 | 4 s-1 | 5 s-1 | |
1 | 24.758 | 22.584 | 18.971 | 11.073 |
2 | 24.762 | 22.604 | 19.157 | 11.745 |
3 | 24.765 | 22.625 | 19.167 | 11.917 |
4 | 24.767 | 22.651 | 19.239 | 12.079 |
5 | 24.767 | 22.714 | 19.325 | 12.296 |
6 | 24.770 | 22.766 | 19.531 | 12.453 |
7 | 84.324 | 78.317 | 69.234 | 52.678 |
8 | 84.332 | 78.367 | 69.486 | 53.441 |
9 | 84.335 | 78.367 | 69.522 | 53.457 |
10 | 84.340 | 78.435 | 69.578 | 53.684 |
11 | 84.342 | 78.547 | 69.750 | 53.973 |
12 | 84.350 | 78.671 | 70.154 | 54.516 |
阶数 | 下降比例/% | |||
---|---|---|---|---|
1~2 s-1 | 2~3 s-1 | 3~4 s-1 | 4~5 s-1 | |
1 | 2.21 | 6.72 | 16.00 | 41.63 |
2 | 2.23 | 6.64 | 15.25 | 38.69 |
3 | 2.21 | 6.58 | 15.28 | 37.83 |
4 | 2.16 | 6.52 | 15.06 | 37.22 |
5 | 2.11 | 6.31 | 14.92 | 36.37 |
6 | 2.09 | 6.13 | 14.21 | 36.24 |
7 | 1.92 | 5.31 | 11.60 | 23.91 |
8 | 1.91 | 5.26 | 11.33 | 23.09 |
9 | 1.89 | 5.29 | 11.29 | 23.11 |
10 | 1.89 | 5.21 | 11.29 | 22.84 |
11 | 1.86 | 5.10 | 11.20 | 22.62 |
12 | 1.83 | 4.99 | 10.83 | 22.29 |
表7 转速增加时桨轴系统固有频率的下降比例
Table 7 The decrease ratios of natural frequencies with the increase of rotational speeds
阶数 | 下降比例/% | |||
---|---|---|---|---|
1~2 s-1 | 2~3 s-1 | 3~4 s-1 | 4~5 s-1 | |
1 | 2.21 | 6.72 | 16.00 | 41.63 |
2 | 2.23 | 6.64 | 15.25 | 38.69 |
3 | 2.21 | 6.58 | 15.28 | 37.83 |
4 | 2.16 | 6.52 | 15.06 | 37.22 |
5 | 2.11 | 6.31 | 14.92 | 36.37 |
6 | 2.09 | 6.13 | 14.21 | 36.24 |
7 | 1.92 | 5.31 | 11.60 | 23.91 |
8 | 1.91 | 5.26 | 11.33 | 23.09 |
9 | 1.89 | 5.29 | 11.29 | 23.11 |
10 | 1.89 | 5.21 | 11.29 | 22.84 |
11 | 1.86 | 5.10 | 11.20 | 22.62 |
12 | 1.83 | 4.99 | 10.83 | 22.29 |
阶数 | 固有频率/Hz | |||
---|---|---|---|---|
70% | 80% | 90% | 100% | |
1 | 24.481 | 25.422 | 26.481 | 28.588 |
2 | 24.481 | 25.424 | 26.488 | 28.595 |
3 | 24.520 | 25.428 | 26.490 | 28.600 |
4 | 24.523 | 25.436 | 26.492 | 28.607 |
5 | 24.548 | 25.442 | 26.500 | 28.615 |
6 | 24.566 | 25.444 | 26.505 | 28.641 |
7 | 83.283 | 84.854 | 86.220 | 86.570 |
8 | 83.357 | 84.855 | 86.231 | 86.594 |
9 | 83.430 | 84.880 | 86.232 | 86.599 |
10 | 83.437 | 84.884 | 86.232 | 86.602 |
11 | 83.512 | 84.897 | 86.236 | 86.605 |
12 | 83.514 | 84.906 | 86.237 | 86.640 |
表8 不同纯度的甘油时桨轴系统的固有频率
Table 8 Natural frequencies of the shaft and impeller system for different glycerine solutions
阶数 | 固有频率/Hz | |||
---|---|---|---|---|
70% | 80% | 90% | 100% | |
1 | 24.481 | 25.422 | 26.481 | 28.588 |
2 | 24.481 | 25.424 | 26.488 | 28.595 |
3 | 24.520 | 25.428 | 26.490 | 28.600 |
4 | 24.523 | 25.436 | 26.492 | 28.607 |
5 | 24.548 | 25.442 | 26.500 | 28.615 |
6 | 24.566 | 25.444 | 26.505 | 28.641 |
7 | 83.283 | 84.854 | 86.220 | 86.570 |
8 | 83.357 | 84.855 | 86.231 | 86.594 |
9 | 83.430 | 84.880 | 86.232 | 86.599 |
10 | 83.437 | 84.884 | 86.232 | 86.602 |
11 | 83.512 | 84.897 | 86.236 | 86.605 |
12 | 83.514 | 84.906 | 86.237 | 86.640 |
阶数 | 固有频率的增加比例/% | |||
---|---|---|---|---|
0.001~0.023 Pa·s | 0.023~0.060 Pa·s | 0.060~0.219 Pa·s | 0.219~1.412 Pa·s | |
1 | 1.12 | 3.84 | 4.17 | 7.96 |
2 | 1.12 | 3.85 | 4.19 | 7.95 |
3 | 1.25 | 3.70 | 4.18 | 7.97 |
4 | 1.20 | 3.72 | 4.15 | 7.98 |
5 | 1.25 | 3.64 | 4.16 | 7.98 |
6 | 1.29 | 3.57 | 4.17 | 8.06 |
7 | 0.70 | 1.89 | 1.61 | 0.41 |
8 | 0.77 | 1.80 | 1.62 | 0.42 |
9 | 0.83 | 1.74 | 1.59 | 0.43 |
10 | 0.84 | 1.73 | 1.59 | 0.43 |
11 | 0.90 | 1.66 | 1.58 | 0.43 |
12 | 0.86 | 1.67 | 1.57 | 0.47 |
表9 介质黏度增大时桨轴系统固有频率的增加比例
Table 9 The decrease ratio of natural frequencies with the increase of rotational speeds
阶数 | 固有频率的增加比例/% | |||
---|---|---|---|---|
0.001~0.023 Pa·s | 0.023~0.060 Pa·s | 0.060~0.219 Pa·s | 0.219~1.412 Pa·s | |
1 | 1.12 | 3.84 | 4.17 | 7.96 |
2 | 1.12 | 3.85 | 4.19 | 7.95 |
3 | 1.25 | 3.70 | 4.18 | 7.97 |
4 | 1.20 | 3.72 | 4.15 | 7.98 |
5 | 1.25 | 3.64 | 4.16 | 7.98 |
6 | 1.29 | 3.57 | 4.17 | 8.06 |
7 | 0.70 | 1.89 | 1.61 | 0.41 |
8 | 0.77 | 1.80 | 1.62 | 0.42 |
9 | 0.83 | 1.74 | 1.59 | 0.43 |
10 | 0.84 | 1.73 | 1.59 | 0.43 |
11 | 0.90 | 1.66 | 1.58 | 0.43 |
12 | 0.86 | 1.67 | 1.57 | 0.47 |
1 | Nester R G. High-speed flexible-blade stirrer and stirrer seal for high-vacuum use[J]. Review of Scientific Instruments, 1956, 27(12): 1080-1081. |
2 | 刘作华, 曾启琴, 王运东, 等. 柔性桨强化高黏度流体混合的能效分析[J]. 化工学报, 2013, 64(10): 3620-3625. |
Liu Z H, Zeng Q Q, Wang Y D, et al. Energy efficiency analysis for high-viscosity fluid mixing enhanced by flexible impeller[J]. CIESC Journal, 2013, 64(10): 3620-3625. | |
3 | 刘作华, 曾启琴, 杨鲜艳, 等. 刚柔组合搅拌桨与刚性桨调控流场结构的对比[J]. 化工学报, 2014, 65(6): 2078-2084. |
Liu Z H, Zeng Q Q, Yang X Y, et al. Flow field structure with rigid-flexible impeller and rigid impeller[J]. CIESC Journal, 2014, 65(6): 2078-2084. | |
4 | 刘仁龙, 李爽, 刘作华, 等. 穿流-柔性组合桨强化搅拌槽中流体混沌混合特性[J]. 化工学报, 2015, 66(12): 4736-4742. |
Liu R L, Li S, Liu Z H, et al. Chaotic mixing enhanced by punched-flexible impeller in stirred vessel[J]. CIESC Journal, 2015, 66(12): 4736-4742. | |
5 | 赵婉丽. 柔性桨叶搅拌槽内流固耦合特性的研究[D]. 北京: 北京化工大学, 2017. |
Zhao W L. Study of fluid-structure interaction characteristics of flexible blade in a stirred tank[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
6 | Gu D Y, Liu Z H, Qiu F C, et al. Design of impeller blades for efficient homogeneity of solid-liquid suspension in a stirred tank reactor[J]. Advanced Powder Technology, 2017, 28(10): 2514-2523. |
7 | Gu D Y, Liu Z H, Li J, et al. Intensification of chaotic mixing in a stirred tank with a punched rigid-flexible impeller and a chaotic motor[J]. Chemical Engineering and Processing: Process Intensification, 2017, 122: 1-9. |
8 | 朱俊. 刚柔组合搅拌桨强化流体混沌混合行为研究[D]. 重庆: 重庆大学, 2017. |
Zhu J. Chaotic mixing performance of multiphase-fluid intensified by double rigid-flexible combination impeller[D]. Chongqing: Chongqing University, 2017. | |
9 | Qiu F C, Liu Z H, Liu R L, et al. Gas-liquid mixing performance, power consumption, and local void fraction distribution in stirred tank reactors with a rigid-flexile impeller[J]. Experimental Thermal and Fluid Science, 2018, 97: 351-363. |
10 | 徐博航. 易形变桨叶搅拌槽内流场特性研究[D]. 北京: 北京化工大学, 2018. |
Xu B H. Flow field characteristics in a stirred vessel with flexible blades[D]. Beijing: Beijing University of Chemical Technology, 2018. | |
11 | Liang Y Y, Shi D E, Xu B H, et al. Turbulent flow field in a stirred vessel agitated by an impeller with flexible blades[J]. AIChE Journal, 2018, 64(11): 4148-4161. |
12 | 熊黠, 刘作华, 谷德银, 等. 刚柔组合桨强化粉煤灰酸浸搅拌槽内固液混沌混合[J]. 化工学报, 2019, 70(5): 1693-1701, 2026. |
Xiong X, Liu Z H, Gu D Y, et al. Chaotic mixing process of fly ash in acid leaching tank intensified by rigid-flexible impeller[J]. CIESC Journal, 2019, 70(5): 1693-1701, 2026. | |
13 | 刘作华, 魏红军, 熊黠, 等. 错位刚柔桨强化搅拌槽内流体混合实验及数值模拟[J]. 化工学报, 2020, 71(10): 4621-4631. |
Liu Z H, Wei H J, Xiong X, et al. Experiment and numerical simulation of chaotic mixing performance enhanced by perturbed rigid-flexible impeller in stirred tank[J]. CIESC Journal, 2020, 71(10): 4621-4631. | |
14 | Young R N, Ga A. Method and apparatus for aeration using flexible blade impeller: US5993158[P]. 1999-11-30. |
15 | Luke Bullock S, Schober S D, Hansen T L. Flexible agitator fins: D477697[P]. 2003-07-22. |
16 | Driss Z, Karray S, Kchaou H, et al. Computer simulations of fluid-structure interaction generated by a flat-blade paddle in a vessel tank[J]. International Review of Aerospace Engineering (IREASE), 2014, 7(3): 88. |
17 | Karray S, Driss Z, Kchaou H, et al. Numerical simulation of fluid-structure interaction in a stirred vessel equipped with an anchor impeller[J]. Journal of Mechanical Science and Technology, 2011, 25(7): 1749-1760. |
18 | Karray S, Driss Z, Kchaou H, et al. Hydromechanics characterization of the turbulent flow generated by anchor impellers[J]. Engineering Applications of Computational Fluid Mechanics, 2011, 5(3): 315-328. |
19 | Karray S, Driss Z, Kaffel A, et al. Fluid-structure interaction in a stirred vessel equipped with a Rushton turbine[J]. International Journal of Mechanics and Applications, 2012, 2(6): 129-139. |
20 | Berger T, Fischer M, Strohmeier K. Fluid-structure interaction of stirrers in mixing vessels[J]. Journal of Pressure Vessel Technology, 2003, 125(4): 440-445. |
21 | Berger T, Strohmeier K. Numerical simulation of stirrer oscillations in consideration of fluid-structure-interaction and flexible restraint systems[C]//Proceedings of ASME 2003 Pressure Vessels and Piping Conference. Cleveland, Ohio, USA,2008: 29-34. |
22 | Ghobadi N, Ogino C, Ogawa T, et al. Using a flexible shaft agitator to enhance the rheology of a complex fungal fermentation culture[J]. Bioprocess and Biosystems Engineering, 2016, 39(11): 1793-1801. |
23 | Ogawa T, Yamamoto M. Frictionless clean reactor “SWINGSTIR”[EB/OL].. |
24 | Staheli C C, Knudsen B M, Williams T G, et al. Fluid mixing system with flexible drive line and foldable impeller: US10272400[P]. 2019-04-30. |
25 | 杨锋苓, 张翠勋, 苏腾龙. 柔性Rushton搅拌桨的功耗与流场特性研究[J]. 化工学报, 2020, 71(2): 614-625. |
Yang F L, Zhang C X, Su T L. Power and flow characteristics of flexible-blade Rushton impeller[J]. CIESC Journal, 2020, 71(2): 614-625. | |
26 | 杨锋苓, 张翠勋, 李美婷. 柔性Rushton搅拌桨混合性能的实验研究[J]. 化工学报, 2020, 71(2): 626-632. |
Yang F L, Zhang C X, Li M T. Experimental study on mixing characteristics of flexible-blade Rushton impeller[J]. CIESC Journal, 2020, 71(2): 626-632. | |
27 | 张阿漫, 戴绍仕. 流固耦合动力学[M]. 北京: 国防工业出版社, 2011. |
Zhang A M, Dai S S. Fluid-Structure Interaction Dynamics[M]. Beijing: National Defense Industry Press, 2011. | |
28 | 徐自力, 艾松. 叶片结构强度与振动[M]. 西安: 西安交通大学出版社, 2018: 170-181. |
Xu Z L, Ai S. Blade Structure Strength and Vibration [M]. Xi'an: Xi'an Jiaotong University Press, 2018: 170-181. | |
29 | 戚振. 基于流固耦合的搅拌反应器机械特性研究[D]. 青岛: 山东科技大学, 2014. |
Qi Z. Research on the mechanical properties of the stirred reactor based on fluid-structure interaction[D]. Qingdao: Shandong University of Science and Technology, 2014. | |
30 | 张福荣. 基于CAD和有限元方法的齿轮模态分析[J]. 科技通报, 2013, 29(9): 93-97, 101. |
Zhang F R. The modal analysis of gear based on CAD & finite element[J]. Bulletin of Science and Technology, 2013, 29(9): 93-97, 101. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[9] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[10] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[11] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[12] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[13] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[14] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[15] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||