化工学报 ›› 2021, Vol. 72 ›› Issue (4): 2102-2112.DOI: 10.11949/0438-1157.20201036
收稿日期:
2020-07-28
修回日期:
2020-11-17
出版日期:
2021-04-05
发布日期:
2021-04-05
通讯作者:
历伟
作者简介:
王宁(1995—),女,硕士研究生,基金资助:
WANG Ning1(),HUI Lei1,CHEN Mei1,3,LI Wei1(),ZHOU Qi2
Received:
2020-07-28
Revised:
2020-11-17
Online:
2021-04-05
Published:
2021-04-05
Contact:
LI Wei
摘要:
采用具有开放型骨架结构的大孔SiO2(Macro-SiO2)与MgCl2形成复合载体,同时引入聚倍半硅氧烷(POSS)形成具有空间分隔作用的POSS/MgCl2纳米团聚体,负载TiCl4后制备得到改性Ziegler-Natta催化剂。采用红外分析、热重分析、CO低温吸附红外、扫描电镜、粒径分析等手段对POSS改性前后催化剂的结构进行表征,发现POSS的引入能诱导MgCl2形成更多Mg4c2+缺陷位点,并促进了Lewis酸性位点的形成,有利于TiCl4有效活性中心的负载。乙烯/1-己烯共聚结果表明,POSS改性催化剂活性较高,最高可达1.03×106 g?(mol?h)-1,同时具有更高的共聚能力,共聚产物中共聚单体摩尔分数可达3.79%,且聚合产物具有较窄的分子量分布(MWD=3~6)。
中图分类号:
王宁, 惠磊, 陈美, 历伟, 周琦. POSS改性负载型Ziegler-Natta催化剂及其乙烯/1-己烯共聚反应[J]. 化工学报, 2021, 72(4): 2102-2112.
WANG Ning, HUI Lei, CHEN Mei, LI Wei, ZHOU Qi. POSS-modified supported Ziegler-Natta catalyst and its ethylene /1-hexene copolymerization[J]. CIESC Journal, 2021, 72(4): 2102-2112.
图4 POSS改性前、后催化剂的SEM图[(a),(c)],Ti元素的EDX图[(b),(d)]及催化剂的TEM图[(e),(f)]
Fig.4 SEM images[(a),(c)], Ti element EDX[(b),(d)], and TEM images[(e),(f)] of the catalysts before and after modified by POSS
Run | Cat. | Ti①/%(mass) | Specific surface area②/(m3·g-1) | Pore size/nm |
---|---|---|---|---|
1 | Cat-POSS-0 | 6.9 | 120 | 10.2 |
2 | Cat-POSS-10 | 8.0 | 135.6 | 10.4 |
3 | Cat-POSS-20 | 7.7 | 135.7 | 10.8 |
4 | Cat-POSS-30 | 7.3 | 83.8 | 8.2 |
5 | Cat-POSS-50 | 7.5 | 50.5 | 7.2 |
表1 催化剂的结构参数
Table 1 The structure parameters of catalysts
Run | Cat. | Ti①/%(mass) | Specific surface area②/(m3·g-1) | Pore size/nm |
---|---|---|---|---|
1 | Cat-POSS-0 | 6.9 | 120 | 10.2 |
2 | Cat-POSS-10 | 8.0 | 135.6 | 10.4 |
3 | Cat-POSS-20 | 7.7 | 135.7 | 10.8 |
4 | Cat-POSS-30 | 7.3 | 83.8 | 8.2 |
5 | Cat-POSS-50 | 7.5 | 50.5 | 7.2 |
Cat. | 1-Hexene/ %(vol) | 1-Hexene content①/%(mol) | Activity/ (g·(mol?h)-1) | PE yield/g | Weight-average molecular weight, | Molecular weight distribution, MWD | ||
---|---|---|---|---|---|---|---|---|
Cat-POSS-0 | 0 | — | 2.9×105 | 3.2 | 136.4 | 46.6 | 172.7×104 | 7.2 |
3 | 0 | 3.4×105 | 4.3 | 129.2 | 45.7 | 134.8×104 | 8.0 | |
5 | 0 | 3.8×105 | 4.0 | 127.5 | 43.8 | 129.5×104 | 6.0 | |
9 | 4.3 | 4.2×105 | 4.7 | 125.6 | 40.5 | 109.1×104 | 7.6 | |
17 | 8.7 | 3.1×105 | 3.5 | 122.5 | 34.8 | 88.7×104 | 7.3 | |
Cat-POSS-20 | 0 | — | 3.3×105 | 4.5 | 137.6 | 48.6 | 94.8×104 | 3.8 |
3 | 0.1 | 7.2×105 | 9.7 | 131.7 | 32.1 | 91.2×104 | 4.6 | |
5 | 0.7 | 7.3×105 | 9.8 | 130.6 | 33.1 | 88.7×104 | 4.7 | |
9 | 3.5 | 9.9×105 | 13.3 | 128.7 | 32.4 | 84.3×104 | 4.8 | |
17 | 18.9 | 10.3×105 | 13.8 | 126.2 | 29.6 | 74.4×104 | 6.1 |
表2 不同催化剂的乙烯/1-己烯共聚合结果
Table 2 The ethylene/1-hexene copolymerization results of different catalysts
Cat. | 1-Hexene/ %(vol) | 1-Hexene content①/%(mol) | Activity/ (g·(mol?h)-1) | PE yield/g | Weight-average molecular weight, | Molecular weight distribution, MWD | ||
---|---|---|---|---|---|---|---|---|
Cat-POSS-0 | 0 | — | 2.9×105 | 3.2 | 136.4 | 46.6 | 172.7×104 | 7.2 |
3 | 0 | 3.4×105 | 4.3 | 129.2 | 45.7 | 134.8×104 | 8.0 | |
5 | 0 | 3.8×105 | 4.0 | 127.5 | 43.8 | 129.5×104 | 6.0 | |
9 | 4.3 | 4.2×105 | 4.7 | 125.6 | 40.5 | 109.1×104 | 7.6 | |
17 | 8.7 | 3.1×105 | 3.5 | 122.5 | 34.8 | 88.7×104 | 7.3 | |
Cat-POSS-20 | 0 | — | 3.3×105 | 4.5 | 137.6 | 48.6 | 94.8×104 | 3.8 |
3 | 0.1 | 7.2×105 | 9.7 | 131.7 | 32.1 | 91.2×104 | 4.6 | |
5 | 0.7 | 7.3×105 | 9.8 | 130.6 | 33.1 | 88.7×104 | 4.7 | |
9 | 3.5 | 9.9×105 | 13.3 | 128.7 | 32.4 | 84.3×104 | 4.8 | |
17 | 18.9 | 10.3×105 | 13.8 | 126.2 | 29.6 | 74.4×104 | 6.1 |
No. of peak | Monomer sequence | Chemical shift | |
---|---|---|---|
Theoretical | Experimental | ||
1 | EHE | 37.78 | 37.82 |
2 | EHEE | 34.54 | 34.48 |
3 | EHE | 34.14 | 34.26 |
4 | HEEE | 30.47 | 30.28 |
5 | EEE | 30.00 | 29.96 |
6 | EHE | 29.34 | 29.42 |
7 | HHEE | 27.09 | 27.22 |
8 | EHE+HHE+HHH | 23.37 | 23.20 |
9 | EHE+HHE+HHH | 14.12 | 14.02 |
表3 乙烯与1-己烯共聚物的化学位移
Table 3 Chemical shift of copolymer of ethylene and 1-hexene
No. of peak | Monomer sequence | Chemical shift | |
---|---|---|---|
Theoretical | Experimental | ||
1 | EHE | 37.78 | 37.82 |
2 | EHEE | 34.54 | 34.48 |
3 | EHE | 34.14 | 34.26 |
4 | HEEE | 30.47 | 30.28 |
5 | EEE | 30.00 | 29.96 |
6 | EHE | 29.34 | 29.42 |
7 | HHEE | 27.09 | 27.22 |
8 | EHE+HHE+HHH | 23.37 | 23.20 |
9 | EHE+HHE+HHH | 14.12 | 14.02 |
1 | Carlini C, D'Alessio A, Giaiacopi S, et al. Linear low-density polyethylenes by co-polymerization of ethylene with 1-hexene in the presence of titanium precursors and organoaluminium co-catalysts[J]. Polymer, 2007, 48(5): 1185-1192. |
2 | Phiwkliang W, Jongsomjit B, Praserthdam P. Synergistic effects of the ZnCl2-SiCl4 modified TiCl4/MgCl2/THF catalytic system on ethylene/1-hexene and ethylene/1-octene copolymerizations[J]. Chinese Journal of Polymer Science, 2014, 32(1): 84-91. |
3 | Czaja K, Białek M. Microstructure of ethylene-1-hexene and ethylene-1-octene copolymers obtained over Ziegler-Natta catalysts supported on MgCl2(THF)2[J]. Polymer, 2001, 42(6): 2289-2297. |
4 | Yang H R, Huang B, Fu Z S, et al. Ethylene/1-hexene copolymerization with supported Ziegler-Natta catalysts prepared by immobilizing TiCl3(OAr) onto MgCl2[J]. Journal of Applied Polymer Science, 2015, 132(4): 41329. |
5 | Yang H R, Zhang L T, Fu Z S, et al. Comonomer effects in copolymerization of ethylene and 1-hexene with MgCl2-supported Ziegler-Natta catalysts: new evidences from active center concentration and molecular weight distribution[J]. Journal of Applied Polymer Science, 2015, 132(2): 41264. |
6 | 楼均勤, 刘小燕, 傅智盛, 等. 2, 6-二异丙基苯酚改性负载型Ziegler-Natta催化剂及其乙烯-1-己烯共聚反应[J]. 高分子学报, 2009, (8): 748-755. |
Lou J Q, Liu X Y, Fu Z S, et al. Ethylene-1-hexene copolymerization with a 2,6-diisopropylphenol modified supported Ziegler-Natta catalyst[J]. Acta Polymerica Sinica, 2009, (8): 748-755. | |
7 | Kissin Y V, Mirabella F M, Meverden C C. Multi-center nature of heterogeneous Ziegler-Natta catalysts: TREF confirmation[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43(19): 4351-4362. |
8 | Hui L, Yue Z, Yang H Q, et al. Influence of the fragmentation of POSS-modified heterogeneous catalyst on the formation of chain entanglements[J]. Industrial & Engineering Chemistry Research, 2018, 57(29): 9400-9406. |
9 | Li W, Yang H, Zhang J, et al. Immobilization of isolated FI catalyst on polyhedral oligomeric silsesquioxane-functionalized silica for the synthesis of weakly entangled polyethylene[J]. Chemical Communications (Cambridge, England), 2016, 52(74): 11092-11095. |
10 | Chen Y M, Liang P, Yue Z, et al. Entanglement formation mechanism in the POSS modified heterogeneous Ziegler-Natta catalysts[J]. Macromolecules, 2019, 52(20): 7593-7602. |
11 | Yue Z, Wang N, Cao Y, et al. Reduced entanglement density of ultrahigh-molecular-weight polyethylene favored by the isolated immobilization on the MgCl2 (110) plane[J]. Industrial & Engineering Chemistry Research, 2020, 59(8): 3351-3358. |
12 | Li W, Hui L, Xue B, et al. Facile high-temperature synthesis of weakly entangled polyethylene using a highly activated Ziegler-Natta catalyst[J]. Journal of Catalysis, 2018, 360: 145-151. |
13 | Xue B, Hui L, Yang H Q, et al. Immobilization of Ziegler-Natta catalyst for ethylene polymerization on macropores SiO2 with an open-framework structure[J]. Industrial & Engineering Chemistry Research, 2017, 56(1): 135-142. |
14 | Pracella M, D'Alessio A, Giaiacopi S, et al. FTIR microanalysis and phase behaviour of ethylene/1-hexene random copolymers[J]. Macromolecular Chemistry and Physics, 2007, 208(14): 1560-1571. |
15 | Kim J H, Han T K, Choi H K, et al. Copolymerization of ethylene and 1-butene with highly active TI/MG bimetallic catalysts. Effect of partial activation by AlEt2Cl[J]. Macromolecular Rapid Communications, 1995, 16(2): 113-118. |
16 | Parada A, Rajmankina T, Chirinos J J, et al. Catalytic systems based on TiCl4/MgCl2/SiCl4-n(OR)n for olefin polymerization[J]. Designed Monomers and Polymers, 2003, 6(1): 1-10. |
17 | Choi J H, Chung J S, Shin H W, et al. The effect of alcohol treatment in the preparation of MgCl2 support by a recrystallization method on the catalytic activity and isotactic index for propylene polymerization[J]. European Polymer Journal, 1996, 32(4): 405-410. |
18 | Panchenko V N, Semikolenova N V, Danilova I G, et al. IRS study of ethylene polymerization catalyst SiO2/methylaluminoxane/zirconocene[J]. Journal of Molecular Catalysis A: Chemical, 1999, 142(1): 27-37. |
19 | Seenivasan K, Gallo E, Piovano A, et al. Silica-supported Ti chloride tetrahydrofuranates, precursors of Ziegler-Natta catalysts[J]. Dalton Transactions, 2013, 42(35): 12706-12713. |
20 | Groppo E, Seenivasan K, Gallo E, et al. Activation and in situ ethylene polymerization on silica-supported Ziegler-Natta catalysts[J]. ACS Catalysis, 2015, 5(9): 5586-5595. |
21 | Pletcher P, Welle A, Vantomme A, et al. Quality control for Ziegler-Natta catalysis via spectroscopic fingerprinting[J]. Journal of Catalysis, 2018, 363: 128-135. |
22 | Lamberti C, Zecchina A, Groppo E, et al. Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy[J]. Chemical Society Reviews, 2010, 39(12): 4951-5001. |
23 | D'Amore M, Thushara K S, Piovano A, et al. Surface investigation and morphological analysis of structurally disordered MgCl2 and MgCl2/TiCl4 Ziegler-Natta catalysts[J]. ACS Catalysis, 2016, 6(9): 5786-5796. |
24 | Sozzani P, Bracco S, Comotti A, et al. Stoichiometric compounds of magnesium dichloride with ethanol for the supported Ziegler-Natta catalysis: first recognition and multidimensional MAS NMR study[J]. Journal of the American Chemical Society, 2003, 125(42): 12881-12893. |
25 | D'Amore M, Credendino R, Budzelaar P H M, et al. A periodic hybrid DFT approach (including dispersion) to MgCl2-supported Ziegler-Natta catalysts(1): TiCl4 adsorption on MgCl2 crystal surfaces[J]. Journal of Catalysis, 2012, 286: 103-110. |
26 | Romano D, Tops N, Andablo-Reyes E, et al. Influence of polymerization conditions on melting kinetics of low entangled UHMWPE and its implications on mechanical properties[J]. Macromolecules, 2014, 47(14): 4750-4760. |
27 | Yu Y, Busico V, Budzelaar P H M, et al. Of poisons and antidotes in polypropylene catalysis[J]. Angewandte Chemie International Edition, 2016, 55(30): 8590-8594. |
28 | Chen M, Chen Y M, Li W, et al. Selective distribution and contribution of nickel based pre-catalyst in the multisite catalyst for the synthesis of desirable bimodal polyethylene[J]. European Polymer Journal, 2020, 135: 109878. |
29 | 豆秀丽, 刘伟娇, 义建军, 等. MgCl2-SiO2复合载体Ti系催化剂的制备及其催化乙烯/1-己烯共聚[J]. 石油化工, 2010, 39(7): 744-749. |
Dou X L, Liu W J, Yi J J, et al. Preparation and characterization of TiCl4/MgCl2-SiO2 di-support catalyst system for copolymerization of ethylene with 1-hexene[J]. Petrochemical Technology, 2010, 39(7): 744-749. | |
30 | Sukulova V V, Barabanov A A, Matsko M A, et al. Kinetic features of ethylene copolymerization with 1-hexene over titanium-magnesium Ziegler-Natta catalysts: effect of comonomer on the number of active centers and the propagation rate constant[J]. Journal of Catalysis, 2019, 369: 276-282. |
31 | Seger M R, Maciel G E. Quantitative 13C NMR analysis of sequence distributions in poly(ethylene-co-1-hexene)[J]. Analytical Chemistry, 2004, 76(19): 5734-5747. |
32 | Grant D M, Paul E G. Carbon-13 magnetic resonance(Ⅱ): Chemical shift data for the alkanes[J]. Journal of the American Chemical Society, 1964, 86(15): 2984-2990. |
[1] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[2] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[3] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[4] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[5] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[6] | 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186. |
[7] | 刘倩, 曹禹, 周琦, 穆景山, 历伟. 孔道结构修饰的Ziegler-Natta催化剂设计与高抗冲低缠结UHMWPE的制备[J]. 化工学报, 2023, 74(3): 1092-1101. |
[8] | 靳志远, 单国荣, 潘鹏举. AM/AMPS/SSS三元共聚物的制备及耐温耐盐性能[J]. 化工学报, 2023, 74(2): 916-923. |
[9] | 陈毓明, 历伟, 严翔, 王靖岱, 阳永荣. 初生态聚乙烯聚集态结构调控研究进展[J]. 化工学报, 2023, 74(2): 487-499. |
[10] | 王雪松, 曾祥宇, 薄翠梅, 汤舒淇, 董超, 李俊, 张泉灵, 金晓明, 叶胜利. PTFE间歇聚合反应过程变周期动态经济优化控制[J]. 化工学报, 2022, 73(9): 3973-3982. |
[11] | 胡宏龙, 郑致刚, 朱为宏. 基于光控二芳基乙烯的手性向列相液晶体系研究进展[J]. 化工学报, 2022, 73(8): 3381-3393. |
[12] | 王磊, 蒋勇, 钟达忠, 李佳元, 郝根彦, 赵强, 李晋平. 碳化的MOF用于电催化还原二氧化碳制备乙烯和乙醇[J]. 化工学报, 2022, 73(8): 3576-3585. |
[13] | 王立维, 王娟娟, 王永洪, 张新儒, 李晋平. 聚乙烯胺/Cu3(BTC)2-MMT-NH2混合基质膜的制备及气体传递性能[J]. 化工学报, 2022, 73(7): 3068-3077. |
[14] | 范小强, 黄正梁, 孙婧元, 王靖岱, 王晓飞, 胡晓波, 韩国栋, 阳永荣, 吴文清. 气液法流化床乙烯云聚合工艺开发及产品高性能化[J]. 化工学报, 2022, 73(6): 2742-2747. |
[15] | 葛世轶, 杨遥, 黄正梁, 孙婧元, 王靖岱, 阳永荣. 基于静电分选解析聚乙烯颗粒生长与形貌演变[J]. 化工学报, 2022, 73(4): 1585-1596. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||