化工学报 ›› 2021, Vol. 72 ›› Issue (6): 3116-3129.DOI: 10.11949/0438-1157.20210124
阳源源1(),王进芝1(),杜俊哲1,杜奥冰1,赵井文1,2(),崔光磊1,2()
收稿日期:
2021-01-19
修回日期:
2021-04-06
出版日期:
2021-06-05
发布日期:
2021-06-05
通讯作者:
赵井文,崔光磊
作者简介:
阳源源(1998—),男,硕士研究生,基金资助:
YANG Yuanyuan1(),WANG Jinzhi1(),DU Junzhe1,DU Aobing1,ZHAO Jingwen1,2(),CUI Guanglei1,2()
Received:
2021-01-19
Revised:
2021-04-06
Online:
2021-06-05
Published:
2021-06-05
Contact:
ZHAO Jingwen,CUI Guanglei
摘要:
因兼顾成本低、安全性能好及体积能量密度高(3832 A·h·L-1)等优点,镁金属二次电池受到了广泛关注。但是,镁负极的实际应用仍然受限于电解液活性物种溶剂化结构的认识不足。目前,镁基电解液主要分为醚类溶剂的格氏试剂电解液、氯化镁铝络合物(MACC)电解液和Mg(TFSI)2基电解液等。其中,镁离子-氯离子的配位结构对镁电池正常运行起到了关键作用,主要突出在降低沉积过电位、增强镁沉积动力学和提高沉积镁可逆性等方面。以氯离子在体相电解液中和在电极界面上与镁之间的相互作用为切入点,分析了镁基电解液的前期开发路线及设计理念,并对镁二次电池的未来发展进行了总结和展望。
中图分类号:
阳源源, 王进芝, 杜俊哲, 杜奥冰, 赵井文, 崔光磊. 镁-氯溶剂化结构在镁基电解液中的作用[J]. 化工学报, 2021, 72(6): 3116-3129.
YANG Yuanyuan, WANG Jinzhi, DU Junzhe, DU Aobing, ZHAO Jingwen, CUI Guanglei. Role of magnesium-chlorine solvation structures in magnesium electrolytes[J]. CIESC Journal, 2021, 72(6): 3116-3129.
1 | Aurbach D, Lu Z, Schechter A, et al. Prototype systems for rechargeable magnesium batteries[J]. Nature, 2000, 407(6805): 724-727. |
2 | 刘东帆, 孙淑英, 于建国. 盐湖卤水提锂技术研究与发展[J]. 化工学报, 2018, 69(1): 141-155. |
Liu D F, Sun S Y, Yu J G. Research and development on technique of lithium recovery from salt lake brine[J]. CIESC Journal, 2018, 69(1): 141-155. | |
3 | 刘凡凡, 王田甜, 范丽珍. 镁离子电池关键材料研究进展[J]. 硅酸盐学报, 2020, 48(7): 947-962. |
Liu F F, Wang T T, Fan L Z. Recent development on key materials for rechargeable magnesium batteries[J]. Journal of the Chinese Ceramic Society, 2020, 48(7): 947-962. | |
4 | Saha P, Datta M K, Velikokhatnyi O I, et al. Rechargeable magnesium battery: current status and key challenges for the future[J]. Progress in Materials Science, 2014, 66: 1-86. |
5 | Aurbach D. Magnesium deposition and dissolution processes in ethereal Grignard salt solutions using simultaneous EQCM-EIS and in situ FTIR spectroscopy[J]. Electrochemical and Solid-State Letters, 1999, 3(1): 31. |
6 | Guo Y S, Yang J, NuLi Y N, et al. Study of electronic effect of Grignard reagents on their electrochemical behavior[J]. Electrochemistry Communications, 2010, 12(12): 1671-1673. |
7 | Yoo H D, Liang Y, Dong H, et al. Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries[J]. Nature Communications, 2017, 8(1): 339. |
8 | Muldoon J, Bucur C B, Gregory T. Fervent hype behind magnesium batteries: an open call to synthetic chemists—electrolytes and cathodes needed[J]. Angewandte Chemie International Edition, 2017, 56(40): 12064-12084. |
9 | Genders J D, Pletcher D. Studies using microelectrodes of the Mg(Ⅱ)/Mg couple in tetrahydrofuran and propylene carbonate[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 199(1): 93-100. |
10 | Sakamoto S, Imamoto T, Yamaguchi K. Constitution of Grignard reagent RMgCl in tetrahydrofuran[J]. Organic Letters, 2001, 3(12): 1793-1795. |
11 | Mizrahi O, Amir N, Pollak E, et al. Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries[J]. Journal of the Electrochemical Society, 2008, 155(2): A103. |
12 | Liebenow C, Yang Z, Lobitz P. The electrodeposition of magnesium using solutions of organomagnesium halides, amidomagnesium halides and magnesium organoborates[J]. Electrochemistry Communications, 2000, 2(9): 641-645. |
13 | Doe R E, Han R, Hwang J, et al. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries[J]. Chemical Communications, 2014, 50(2): 243-245. |
14 | Canepa P, Gautam G S, Malik R, et al. Understanding the initial stages of reversible Mg deposition and stripping in inorganic nonaqueous electrolytes[J]. Chemistry of Materials, 2015, 27(9): 3317-3325. |
15 | Singh N, Arthur T S, Ling C, et al. A high energy-density tin anode for rechargeable magnesium-ion batteries[J]. Chem. Commun., 2013, 49(2): 149-151. |
16 | Lapidus S H, Rajput N N, Qu X H, et al. Solvation structure and energetics of electrolytes for multivalent energy storage[J]. Physical Chemistry Chemical Physics, 2014, 16(40): 21941-21945. |
17 | Attias R, Salama M, Hirsch B, et al. Anode-electrolyte interfaces in secondary magnesium batteries[J]. Joule, 2019, 3(1): 27-52. |
18 | Aurbach D, Gizbar H, Schechter A, et al. Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes[J]. Journal of the Electrochemical Society, 2002, 149(2): A115. |
19 | Pour N, Gofer Y, Major D T, et al. Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations[J]. Journal of the American Chemical Society, 2011, 133(16): 6270-6278. |
20 | Kim H S, Arthur T S, Allred G D, et al. Structure and compatibility of a magnesium electrolyte with a sulphur cathode[J]. Nature Communications, 2011, 2: 427. |
21 | Pan B F, Huang J H, Sa N Y, et al. MgCl2: the key ingredient to improve chloride containing electrolytes for rechargeable magnesium-ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(8): A1672-A1677. |
22 | Benmayza A, Ramanathan M, Arthur T S, et al. Effect of electrolytic properties of a magnesium organohaloaluminate electrolyte on magnesium deposition[J]. The Journal of Physical Chemistry C, 2013, 117(51): 26881-26888. |
23 | Zhao Y Y, Wang D S, Yang D, et al. Superior Mg2+ storage properties of VS2 nanosheets by using an APC-PP14Cl/THF electrolyte[J]. Energy Storage Materials, 2019, 23: 749-756. |
24 | Wang L, Jiang B, Vullum P E, et al. High interfacial charge storage capability of carbonaceous cathodes for Mg batteries[J]. ACS Nano, 2018, 12(3): 2998-3009. |
25 | Zhao-Karger Z, Mueller J E, Zhao X Y, et al. Novel transmetalation reaction for electrolyte synthesis for rechargeable magnesium batteries[J]. RSC Advances, 2014, 4(51): 26924-26927. |
26 | Merrill L C, Schaefer J L. Electrochemical properties and speciation in Mg(HMDS)2-based electrolytes for magnesium batteries as a function of ethereal solvent type and temperature[J]. Langmuir, 2017, 33(37): 9426-9433. |
27 | Liao C, Sa N Y, Key B, et al. The unexpected discovery of the Mg(HMDS)2/MgCl2 complex as a magnesium electrolyte for rechargeable magnesium batteries[J]. Journal of Materials Chemistry A, 2015, 3(11): 6082-6087. |
28 | Dongmo S, Zaubitzer S, Schüler P, et al. Stripping and plating a magnesium metal anode in bromide-based non-nucleophilic electrolytes[J]. ChemSusChem, 2020, 13(13): 3530-3538. |
29 | Shterenberg I, Salama M, Gofer Y, et al. The challenge of developing rechargeable magnesium batteries[J]. MRS Bulletin, 2014, 39(5): 453-460. |
30 | Lu Z, Schechter A, Moshkovich M, et al. On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions[J]. Journal of Electroanalytical Chemistry, 1999, 466(2): 203-217. |
31 | Liu T B, Shao Y Y, Li G S, et al. A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries[J]. Journal of Materials Chemistry A, 2014, 2(10): 3430. |
32 | Barile C J, Barile E C, Zavadil K R, et al. Electrolytic conditioning of a magnesium aluminum chloride complex for reversible magnesium deposition[J]. The Journal of Physical Chemistry C, 2014, 118(48): 27623-27630. |
33 | Ha J H, Adams B, Cho J H, et al. A conditioning-free magnesium chloride complex electrolyte for rechargeable magnesium batteries[J]. Journal of Materials Chemistry A, 2016, 4(19): 7160-7164. |
34 | Fan H Y, Zheng Z Z, Zhao L J, et al. Extending cycle life of Mg/S battery by activation of Mg anode/electrolyte interface through an LiCl-assisted MgCl2 solubilization mechanism[J]. Advanced Functional Materials, 2020, 30(9): 1909370. |
35 | See K A, Liu Y M, Ha Y, et al. Effect of concentration on the electrochemistry and speciation of the magnesium aluminum chloride complex electrolyte solution[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 35729-35739. |
36 | Zhang Z H, Dong S M, Cui Z L, et al. Rechargeable magnesium batteries using conversion-type cathodes: a perspective and minireview[J]. Small Methods, 2018, 2(10): 1800020. |
37 | Hou T H, Monroe C W. Exploration of novel magnesium battery electrolytes based on inorganic salts[J]. ECS Transactions, 2017, 77(1): 23-31. |
38 | Ha J H, Cho J, Kim J H, et al. Synthesis of magnesium chloride complex electrolyte: galvanic couple assisted catalytic dissolution of magnesium in ethereal solution[J]. Journal of Power Sources, 2018, 398: 120-127. |
39 | Kim S S, Bevilacqua S C, See K A. Conditioning-free Mg electrolyte by the minor addition of Mg(HMDS)2[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 5226-5233. |
40 | He Y S, Li Q, Yang L L, et al. Electrochemical-conditioning-free and water-resistant hybrid AlCl3/MgCl2/Mg(TFSI)2 electrolytes for rechargeable magnesium batteries[J]. Angewandte Chemie International Edition, 2019, 58(23): 7615-7619. |
41 | He S J, Luo J, Liu T L. MgCl2/AlCl3 electrolytes for reversible Mg deposition/stripping: electrochemical conditioning or not?[J]. Journal of Materials Chemistry A, 2017, 5(25): 12718-12722. |
42 | Bieker G, Wellmann J, Kolek M, et al. Influence of cations in lithium and magnesium polysulphide solutions: dependence of the solvent chemistry[J]. Physical Chemistry Chemical Physics, 2017, 19(18): 11152-11162. |
43 | Bieker G, Salama M, Kolek M, et al. The power of stoichiometry: conditioning and speciation of MgCl2/AlCl3 in tetraethylene glycol dimethyl ether-based electrolytes[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24057-24066. |
44 | Sa N Y, Rajput N N, Wang H, et al. Concentration dependent electrochemical properties and structural analysis of a simple magnesium electrolyte: magnesium bis(trifluoromethane sulfonyl)imide in diglyme[J]. RSC Advances, 2016, 6(114): 113663-113670. |
45 | Chen Y, Jaegers N R, Wang H, et al. Role of solvent rearrangement on Mg2+ solvation structures in dimethoxyethane solutions using multimodal NMR analysis[J]. The Journal of Physical Chemistry Letters, 2020, 11(15): 6443-6449. |
46 | Salama M, Shterenberg I, Gizbar H, et al. Unique behavior of dimethoxyethane (DME)/Mg(N(SO2CF3)2)2 solutions[J]. The Journal of Physical Chemistry C, 2016, 120(35): 19586-19594. |
47 | Ha S Y, Lee Y W, Woo S W, et al. Magnesium (Ⅱ) bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(6): 4063-4073. |
48 | Rajput N N, Qu X H, Sa N Y, et al. The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics[J]. Journal of the American Chemical Society, 2015, 137(9): 3411-3420. |
49 | Pan B F, Zhou D H, Huang J H, et al. 2, 5-Dimethoxy-1, 4-benzoquinone (DMBQ) as organic cathode for rechargeable magnesium-ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(3): A580-A583. |
50 | Cheng Y W, Stolley R M, Han K S, et al. Highly active electrolytes for rechargeable Mg batteries based on a [Mg2(μ-Cl)2]2+ cation complex in dimethoxyethane[J]. Physical Chemistry Chemical Physics, 2015, 17(20): 13307-13314. |
51 | Li X G, Gao T, Han F D, et al. Reducing Mg anode overpotential via ion conductive surface layer formation by iodine additive[J]. Advanced Energy Materials, 2018, 8(7): 1701728. |
52 | Wang H, Feng X F, Chen Y, et al. Reversible electrochemical interface of Mg metal and conventional electrolyte enabled by intermediate adsorption[J]. ACS Energy Letters, 2020, 5(1): 200-206. |
53 | Ding M S, Diemant T, Behm R J, et al. Dendrite growth in Mg metal cells containing Mg(TFSI)2/glyme electrolytes[J]. Journal of the Electrochemical Society, 2018, 165(10): A1983-A1990. |
54 | Baskin A, Prendergast D. Exploration of the detailed conditions for reductive stability of Mg(TFSI)2 in diglyme: implications for multivalent electrolytes[J]. The Journal of Physical Chemistry C, 2016, 120(7): 3583-3594. |
55 | Kang S J, Kim H, Hwang S, et al. Electrolyte additive enabling conditioning-free electrolytes for magnesium batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 517-524. |
56 | Shterenberg I, Salama M, Yoo H D, et al. Evaluation of (CF3SO2)2N- (TFSI) based electrolyte solutions for Mg batteries[J]. Journal of the Electrochemical Society, 2015, 162(13): A7118-A7128. |
57 | Salama M, Shterenberg I, Shimon L J W, et al. Structural analysis of magnesium chloride complexes in dimethoxyethane solutions in the context of Mg batteries research[J]. The Journal of Physical Chemistry C, 2017, 121(45): 24909-24918. |
58 | Sa N Y, Pan B F, Saha-Shah A, et al. Role of chloride for a simple, non-Grignard Mg electrolyte in ether-based solvents[J]. ACS Applied Materials & Interfaces, 2016, 8(25): 16002-16008. |
59 | Mohtadi R, Matsui M, Arthur T S, et al. Magnesium borohydride: from hydrogen storage to magnesium battery[J]. Angewandte Chemie International Edition, 2012, 51(39): 9780-9783. |
60 | Carter T J, Mohtadi R, Arthur T S, et al. Boron clusters as highly stable magnesium-battery electrolytes[J]. Angewandte Chemie International Edition, 2014, 53(12): 3173-3177. |
61 | Tutusaus O, Mohtadi R, Arthur T S, et al. An efficient halogen-free electrolyte for use in rechargeable magnesium batteries[J]. Angewandte Chemie International Edition, 2015, 54(27): 7900-7904. |
62 | McArthur S G, Jay R, Geng L X, et al. Below the 12-vertex: 10-vertex carborane anions as non-corrosive, halide free, electrolytes for rechargeable Mg batteries[J]. Chemical Communications, 2017, 53(32): 4453-4456. |
63 | McArthur S G, Geng L X, Guo J C, et al. Cation reduction and comproportionation as novel strategies to produce high voltage, halide free, carborane based electrolytes for rechargeable Mg batteries[J]. Inorganic Chemistry Frontiers, 2015, 2(12): 1101-1104. |
64 | Kar M, Simons T J, Forsyth M, et al. Ionic liquid electrolytes as a platform for rechargeable metal-air batteries: a perspective[J]. Physical Chemistry Chemical Physics, 2014, 16(35): 18658-18674. |
65 | NuLi Y N, Yang J, Wang J L, et al. Electrochemical magnesium deposition and dissolution with high efficiency in ionic liquid[J]. Electrochemical and Solid-State Letters, 2005, 8(11): C166. |
66 | Sutto T E, Duncan T T. Electrochemical and structural characterization of Mg ion intercalation into Co3O4 using ionic liquid electrolytes[J]. Electrochimica Acta, 2012, 80: 413-417. |
67 | Watkins T, Buttry D A. Determination of Mg2+ speciation in a TFSI: based ionic liquid with and without chelating ethers using Raman spectroscopy[J]. The Journal of Physical Chemistry B, 2015, 119(23): 7003-7014. |
68 | Ma Z, Forsyth M, MacFarlane D R, et al. Ionic liquid/tetraglyme hybrid Mg[TFSI]2 electrolytes for rechargeable Mg batteries[J]. Green Energy & Environment, 2019, 4(2): 146-153. |
69 | Gregory T D, Hoffman R J, Winterton R C. Nonaqueous electrochemistry of magnesium: applications to energy storage[J]. Journal of the Electrochemical Society, 1990, 137(3): 775-780. |
70 | Attias R, Chae M S, Dlugatch B, et al. The role of surface adsorbed Cl- complexes in rechargeable magnesium batteries[J]. ACS Catalysis, 2020, 10(14): 7773-7784. |
71 | Xue X L, Chen R P, Song X M, et al. Electrochemical Mg2+ displacement driven reversible copper extrusion/intrusion reactions for high-rate rechargeable magnesium batteries[J]. Advanced Functional Materials, 2021, 31(10): 2009394. |
72 | Cheng Y W, Liu T B, Shao Y Y, et al. Electrochemically stable cathode current collectors for rechargeable magnesium batteries[J]. J. Mater. Chem. A, 2014, 2(8): 2473-2477. |
73 | Prabakar S J R, Park C, Ikhe A B, et al. Simultaneous suppression of metal corrosion and electrolyte decomposition by graphene oxide protective coating in magnesium-ion batteries: toward a 4-V-wide potential window[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 43767-43773. |
74 | Lancry E, Levi E, Gofer Y, et al. Leaching chemistry and the performance of the Mo6S8 cathodes in rechargeable Mg batteries[J]. Chem. Mater., 2004, 16(14): 2832-2838. |
75 | Novák P, Desilvestro J. Electrochemical insertion of magnesium in metal oxides and sulfides from aprotic electrolytes[J]. Journal of the Electrochemical Society, 1993, 140(1): 140-144. |
76 | Sun X Q, Bonnick P, Duffort V, et al. A high capacity thiospinel cathode for Mg batteries[J]. Energy & Environmental Science, 2016, 9(7): 2273-2277. |
77 | You C L, Wu X W, Yuan X H, et al. Advances in rechargeable Mg batteries[J]. Journal of Materials Chemistry A, 2020, 8(48): 25601-25625. |
78 | Mao M L, Lin Z J, Tong Y X, et al. Iodine vapor transport-triggered preferential growth of chevrel Mo6S8 nanosheets for advanced multivalent batteries[J]. ACS Nano, 2020, 14(1): 1102-1110. |
79 | Levi E, Lancry E, Mitelman A, et al. Phase diagram of Mg insertion into chevrel phases, MgxMo6T8 (T: S, Se)(2). The crystal structure of triclinic MgMo6Se8[J]. Chem. Mater., 2006, 18(16): 3705-3714. |
80 | Mao M, Gao T, Hou S, et al. A critical review of cathodes for rechargeable Mg batteries[J]. Chemical Society Reviews, 2018, 47(23): 8804-8841. |
81 | Aurbach D, Suresh G, Levi E, et al. Progress in rechargeable magnesium battery technology[J]. Advanced Materials, 2007, 19(23): 4260-4267. |
82 | Mukherjee A, Taragin S, Aviv H, et al. Rationally designed vanadium pentoxide as high capacity insertion material for Mg-ion[J]. Advanced Functional Materials, 2020, 30(38): 2003518. |
83 | Fu Q, Sarapulova A, Trouillet V, et al. In operando synchrotron diffraction and in operando X-ray absorption spectroscopy investigations of orthorhombic V2O5 nanowires as cathode materials for Mg-ion batteries[J]. Journal of the American Chemical Society, 2019, 141(6): 2305-2315. |
84 | Tang H, Xiong F Y, Jiang Y L, et al. Alkali ions pre-intercalated layered vanadium oxide nanowires for stable magnesium ions storage[J]. Nano Energy, 2019, 58: 347-354. |
85 | Yu L, Zhang X G. Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content[J]. Journal of Colloid and Interface Science, 2004, 278(1): 160-165. |
86 | Wan L F, Perdue B R, Apblett C A, et al. Mg desolvation and intercalation mechanism at the Mo6S8 chevrel phase surface[J]. Chemistry of Materials, 2015, 27(17): 5932-5940. |
87 | Levi E, Levi M D, Chasid O, et al. A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries[J]. Journal of Electroceramics, 2009, 22(1/2/3): 13-19. |
88 | Kim K I, Guo Q B, Tang L T, et al. Reversible insertion of Mg-Cl superhalides in graphite as a cathode for aqueous dual-ion batteries[J]. Angewandte Chemie, 2020, 132(45): 20096-20100. |
[1] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[2] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[3] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[4] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[5] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[6] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[7] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[8] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[9] | 尹驰, 张正国, 凌子夜, 方晓明. 含石蜡@二氧化硅纳米胶囊和碳纤维的相变热界面材料及其散热性能[J]. 化工学报, 2023, 74(4): 1795-1804. |
[10] | 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597. |
[11] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[12] | 程伟江, 汪何琦, 高翔, 李娜, 马赛男. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584. |
[13] | 廖艺, 牛亚宾, 潘艳秋, 俞路. 复配表面活性剂对油水界面行为和性质影响的模拟研究[J]. 化工学报, 2022, 73(9): 4003-4014. |
[14] | 葛旺鑫, 朱以华, 江宏亮, 李春忠. 二氧化碳电还原的电解质研究进展[J]. 化工学报, 2022, 73(8): 3433-3447. |
[15] | 于喆淼, 王志, 生梦龙, 邢广宇, 王纪孝. 界面聚合法制备用于脱氮提纯CH4的N2优先渗透ZIF-90/聚酰胺混合基质膜[J]. 化工学报, 2022, 73(7): 3273-3286. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 331
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 722
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||